Suppr超能文献

不稳定任务的内部模型是如何形成的?

How are internal models of unstable tasks formed?

作者信息

Burdet E, Franklin D W, Osu R, Tee K P, Kawato M, Milner T E

机构信息

Department of Mechanical Engineering, National University of Singapore, Singapore.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4491-4. doi: 10.1109/IEMBS.2004.1404248.

Abstract

The results of recent studies suggest that humans can form internal models that they use in a feedforward manner to compensate for both stable and unstable dynamics. To examine how internal models are formed, we performed adaptation experiments in novel dynamics, and measured the endpoint force, trajectory and EMG during learning. Analysis of reflex feedback and change of feedforward commands between consecutive trials suggested a unified model of motor learning, which can coherently unify the learning processes observed in stable and unstable dynamics and reproduce available data on motor learning. To our knowledge, this algorithm, based on the concurrent minimization of (reflex) feedback and muscle activation, is also the first nonlinear adaptive controller able to stabilize unstable dynamics.

摘要

近期研究结果表明,人类能够形成内部模型,并以前馈方式使用这些模型来补偿稳定和不稳定的动力学。为了研究内部模型是如何形成的,我们在新的动力学环境中进行了适应性实验,并在学习过程中测量了端点力、轨迹和肌电图。对连续试验之间的反射反馈和前馈指令变化的分析提出了一种统一的运动学习模型,该模型能够连贯地统一在稳定和不稳定动力学中观察到的学习过程,并重现运动学习方面的现有数据。据我们所知,这种基于(反射)反馈和肌肉激活同时最小化的算法,也是首个能够稳定不稳定动力学的非线性自适应控制器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验