Suppr超能文献

衍生时间聚类分析:检测长时间神经元活动。

Derivative temporal clustering analysis: detecting prolonged neuronal activity.

作者信息

Zhao Xia, Li Geng, Glahn David C, Fox Peter T, Gao Jia-Hong

机构信息

Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

出版信息

Magn Reson Imaging. 2007 Feb;25(2):183-7. doi: 10.1016/j.mri.2006.09.026. Epub 2006 Nov 14.

Abstract

Temporal clustering analysis (TCA) and independent component analysis (ICA) are promising data-driven techniques in functional magnetic resonance imaging (fMRI) experiments to obtain brain activation maps in conditions with unknown temporal information regarding the neuronal activity. Although comparable to ICA in detecting transient neuronal activities, TCA fails to detect prolonged plateau brain activations. To eliminate this pitfall, a novel derivative TCA (DTCA) method was introduced and its algorithms with different subtraction intervals were tested on simulated data with a pattern of prolonged plateau brain activation. It was found that the best performance of DTCA method in generating functional maps could be obtained if the subtraction interval is equal to or larger than the length of the rising time of the fMRI response. The DTCA method and its theoretical predication were further investigated and validated using in vivo fMRI data sets. By removing the limitations in the previous TCA, DTCA has shown its powerful capability in detecting prolonged plateau neuronal activities.

摘要

时间聚类分析(TCA)和独立成分分析(ICA)是功能磁共振成像(fMRI)实验中很有前景的数据驱动技术,用于在关于神经元活动的时间信息未知的情况下获取脑激活图。尽管在检测瞬态神经元活动方面与ICA相当,但TCA无法检测到持续的平台期脑激活。为了消除这一缺陷,引入了一种新的衍生TCA(DTCA)方法,并在具有持续平台期脑激活模式的模拟数据上测试了其具有不同减法间隔的算法。结果发现,如果减法间隔等于或大于fMRI响应上升时间的长度,则DTCA方法在生成功能图方面可获得最佳性能。使用体内fMRI数据集对DTCA方法及其理论预测进行了进一步研究和验证。通过消除先前TCA中的局限性,DTCA在检测持续的平台期神经元活动方面显示出强大的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验