Zhao Xia, Glahn David, Tan Li Hai, Li Ning, Xiong Jinhu, Gao Jia-Hong
Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
J Magn Reson Imaging. 2004 Apr;19(4):397-402. doi: 10.1002/jmri.20023.
To make a quantitative comparison of temporal cluster analysis (TCA) and independent component analysis (ICA) techniques in detecting brain activation by using simulated data and in vivo event-related functional MRI (fMRI) experiments.
A single-slice MRI image was replicated 150 times to simulate an fMRI time series. An event-related brain activation pattern with five different levels of intensity and Gaussian noise was superimposed on these images. Maximum contrast-to-noise ratio (CNR) of the signal change ranged from 1.0 to 2.0 by 0.25 increments. In vivo visual stimulation fMRI experiments were performed on a 1.9 T magnet. Six human volunteers participated in this study. All imaging data were analyzed using both TCA and ICA methods.
Both simulated and in vivo data have shown that no statistically significant difference exists in the activation areas detected by both ICA and TCA techniques when CNR of fMRI signal is larger than 1.75.
TCA and ICA techniques are comparable in generating functional brain maps in event-related fMRI experiments. Although ICA has richer features in exploring the spatial and temporal information of the functional images, the TCA method has advantages in its computational efficiency, repeatability, and readiness to average data from group subjects
通过使用模拟数据和体内事件相关功能磁共振成像(fMRI)实验,对时间聚类分析(TCA)和独立成分分析(ICA)技术在检测脑激活方面进行定量比较。
将单层面MRI图像复制150次以模拟fMRI时间序列。在这些图像上叠加具有五种不同强度水平和高斯噪声的事件相关脑激活模式。信号变化的最大对比噪声比(CNR)以0.25的增量在1.0至2.0范围内变化。在1.9 T磁体上进行体内视觉刺激fMRI实验。六名人类志愿者参与了本研究。所有成像数据均使用TCA和ICA方法进行分析。
模拟数据和体内数据均显示,当fMRI信号的CNR大于1.75时,ICA和TCA技术检测到的激活区域不存在统计学上的显著差异。
在事件相关fMRI实验中,TCA和ICA技术在生成功能性脑图谱方面具有可比性。虽然ICA在探索功能图像的空间和时间信息方面具有更丰富的特征,但TCA方法在计算效率、可重复性以及对来自组内受试者的数据进行平均处理的便利性方面具有优势。