Suppr超能文献

使用主成分分析选择脑电图通道子集以区分酗酒者和非酗酒者。

Selection of a Subset of EEG Channels using PCA to classify Alcoholics and Non-alcoholics.

作者信息

Ong Kok-Meng, Thung K-H, Wee Chong-Yaw, Paramesran Raveendran

机构信息

Department of Electrical Engineering, Engineering Faculty, University of Malaya, 50603 Kuala Lumpur.

出版信息

Conf Proc IEEE Eng Med Biol Soc. 2005;2005:4195-8. doi: 10.1109/IEMBS.2005.1615389.

Abstract

The Principal Component Analysis (PCA) is proposed as feature selection method in choosing a subset of channels for Visual Evoked Potentials (VEP). The selected channels are to preserve as much information present as compared to the full set of 61 channels as possible. The method is applied to classify two categories of subjects: alcoholics and non-alcoholics. The electroencephalogram (EEG) was recorded when the subjects were presented with single trial visual stimuli. The proposed method is successful in selecting the a subset of channels that contribute to high accuracy in the classification of alcoholics and non-alcoholics.

摘要

主成分分析(PCA)被提议作为一种特征选择方法,用于为视觉诱发电位(VEP)选择通道子集。与61个通道的完整集合相比,所选通道要尽可能多地保留现有信息。该方法应用于对两类受试者进行分类:酗酒者和非酗酒者。当向受试者呈现单次试验视觉刺激时,记录脑电图(EEG)。所提出的方法成功地选择了一个通道子集,该子集有助于在酗酒者和非酗酒者的分类中实现高精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验