Suppr超能文献

非哺乳动物脊椎动物大脑中的增殖、神经发生和再生。

Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain.

作者信息

Kaslin Jan, Ganz Julia, Brand Michael

机构信息

Biotechnology Centre and Centre for Regenerative Therapies Dresden, Dresden University of Technology, Tatzberg 47-51, 01307 Dresden, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2008 Jan 12;363(1489):101-22. doi: 10.1098/rstb.2006.2015.

Abstract

Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiated in vitro from several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.

摘要

胚后神经发生是脊椎动物大脑的一个基本特征。然而,随着系统发育,成年神经发生的水平显著下降。在本综述的第一部分,讨论了成年神经发生及其在脊椎动物中假定作用的比较分析。哺乳动物中的成年神经发生局限于两个端脑组成性活跃区。相反,非哺乳动物脊椎动物在许多脑区表现出大量的成年神经发生。成年神经发生的系统发育差异尚不清楚。然而,表现出广泛成年神经发生的脊椎动物(鱼类、两栖类和爬行类)的一个共同特征是与鸟类和哺乳动物相比,胚后脑有大量生长。鱼类、青蛙和爬行类的成年神经发生可能与感觉系统和相应感觉脑区的协调生长有关。同样,与更依赖视觉的灵长类动物和鸣禽相比,以嗅觉为主的哺乳动物的嗅球会大量增加神经元,而灵长类动物和鸣禽的嗅球增加的神经元则少得多。本综述的第二部分重点关注脊椎动物大脑可塑性和再生的差异。有趣的是,最近的几项研究表明成年哺乳动物大脑中的神经发生受到抑制。在哺乳动物中,神经发生可在组成性神经发生的脑区诱导,也可在损伤、疾病或实验操作后异位诱导。此外,多能祖细胞可从哺乳动物大脑的几个原本静止的区域体外分离和分化。这表明在非神经发生脑区募集或产生神经元的潜力在哺乳动物中并未完全丧失。脊椎动物成年神经发生的水平与损伤再生能力相关,例如鱼类和两栖类表现出最广泛的成年神经发生,也具有最大的中枢神经系统损伤再生能力。在非哺乳动物脊椎动物中研究这些现象可能会极大地增进我们对再生和成年神经发生潜在机制的理解。了解调节成年大脑内源性增殖和神经发生许可的机制对脑损伤和疾病的治疗方法具有重要意义。

相似文献

1
Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain.
Philos Trans R Soc Lond B Biol Sci. 2008 Jan 12;363(1489):101-22. doi: 10.1098/rstb.2006.2015.
3
Neural stem cell plasticity: recruitment of endogenous populations for regeneration.
Curr Neurovasc Res. 2004 Jul;1(3):215-29. doi: 10.2174/1567202043362397.
4
Adult neurogenesis and neuronal regeneration in the brain of teleost fish.
J Physiol Paris. 2008 Jul-Nov;102(4-6):357-73. doi: 10.1016/j.jphysparis.2008.10.007. Epub 2008 Oct 17.
6
Is there a relationship between adult neurogenesis and neuron generation following injury across evolution?
Eur J Neurosci. 2011 Sep;34(6):951-62. doi: 10.1111/j.1460-9568.2011.07833.x.
7
Adult neurogenesis in non-mammalian vertebrates.
Bioessays. 2007 Aug;29(8):745-57. doi: 10.1002/bies.20615.
8
Neurogenesis and neuronal regeneration in the adult reptilian brain.
Brain Behav Evol. 2001;58(5):276-95. doi: 10.1159/000057570.
9
Endogenous regulation of neural stem cells in the adult mammalian brain.
Cent Nerv Syst Agents Med Chem. 2009 Jun;9(2):110-8. doi: 10.2174/187152409788452081.
10
Towards brain repair: Insights from teleost fish.
Semin Cell Dev Biol. 2009 Aug;20(6):683-90. doi: 10.1016/j.semcdb.2008.12.001. Epub 2008 Dec 9.

引用本文的文献

1
3
Significance of birth in the maintenance of quiescent neural stem cells.
Sci Adv. 2025 Jan 24;11(4):eadn6377. doi: 10.1126/sciadv.adn6377. Epub 2025 Jan 22.
4
Advanced therapy to cure diabetes: mission impossible is now possible?
Front Cell Dev Biol. 2024 Nov 19;12:1484859. doi: 10.3389/fcell.2024.1484859. eCollection 2024.
7
Dissecting the spatiotemporal diversity of adult neural stem cells.
Mol Syst Biol. 2024 Apr;20(4):321-337. doi: 10.1038/s44320-024-00022-z. Epub 2024 Feb 16.
8
The Role of the Stimulus in Olfactory Plasticity.
Brain Sci. 2023 Nov 6;13(11):1553. doi: 10.3390/brainsci13111553.
10

本文引用的文献

1
[Not Available].
Wilhelm Roux Arch Entwickl Mech Org. 1953 Jul;146(4):433-486. doi: 10.1007/BF00576578.
2
Proliferative activity in the frog brain: a PCNA-immunohistochemistry analysis.
J Chem Neuroanat. 2006 Dec;32(2-4):127-42. doi: 10.1016/j.jchemneu.2006.08.001. Epub 2006 Sep 20.
3
Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon.
Dev Biol. 2006 Jul 1;295(1):278-93. doi: 10.1016/j.ydbio.2006.03.023. Epub 2006 May 4.
4
Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate.
Dev Biol. 2006 Jul 1;295(1):263-77. doi: 10.1016/j.ydbio.2006.03.040. Epub 2006 Apr 4.
5
Adult neurogenesis and functional plasticity in neuronal circuits.
Nat Rev Neurosci. 2006 Mar;7(3):179-93. doi: 10.1038/nrn1867.
6
Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae.
Dev Growth Differ. 2006 Jan;48(1):15-24. doi: 10.1111/j.1440-169X.2006.00840.x.
9
Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18183-8. doi: 10.1073/pnas.0506535102. Epub 2005 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验