Suppr超能文献

NetPhosYeast:酵母中蛋白质磷酸化位点的预测

NetPhosYeast: prediction of protein phosphorylation sites in yeast.

作者信息

Ingrell Christian R, Miller Martin L, Jensen Ole N, Blom Nikolaj

机构信息

University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.

出版信息

Bioinformatics. 2007 Apr 1;23(7):895-7. doi: 10.1093/bioinformatics/btm020. Epub 2007 Feb 5.

Abstract

UNLABELLED

We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast--an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites in yeast.

AVAILABILITY

The NetPhosYeast prediction service is available as a public web server at http://www.cbs.dtu.dk/services/NetPhosYeast/.

摘要

未标注

我们在此提出一种基于神经网络的方法,用于预测酵母中的蛋白质磷酸化位点——基础研究的重要模式生物。现有的蛋白质磷酸化位点预测器主要基于哺乳动物数据,与人类相比,对酵母磷酸化位点的敏感性较低,这表明需要一种酵母特异性的磷酸化位点预测器。NetPhosYeast的相关系数接近0.75,敏感性为0.84,特异性为0.90,在识别酵母中的磷酸化位点方面优于现有预测器。

可用性

NetPhosYeast预测服务可作为公共网络服务器在http://www.cbs.dtu.dk/services/NetPhosYeast/上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验