Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium.
J Proteome Res. 2021 Aug 6;20(8):3840-3852. doi: 10.1021/acs.jproteome.1c00139. Epub 2021 Jul 8.
For yeast cells, tolerance to high levels of ethanol is vital both in their natural environment and in industrially relevant conditions. We recently genotyped experimentally evolved yeast strains adapted to high levels of ethanol and identified mutations linked to ethanol tolerance. In this study, by integrating genomic sequencing data with quantitative proteomics profiles from six evolved strains (data set identifier PXD006631) and construction of protein interaction networks, we elucidate exactly how the genotype and phenotype are related at the molecular level. Our multi-omics approach points to the rewiring of numerous metabolic pathways affected by genomic and proteomic level changes, from energy-producing and lipid pathways to differential regulation of transposons and proteins involved in cell cycle progression. One of the key differences is found in the energy-producing metabolism, where the ancestral yeast strain responds to ethanol by switching to respiration and employing the mitochondrial electron transport chain. In contrast, the ethanol-adapted strains appear to have returned back to energy production mainly via glycolysis and ethanol fermentation, as supported by genomic and proteomic level changes. This work is relevant for synthetic biology where systems need to function under stressful conditions, as well as for industry and in cancer biology, where it is important to understand how the genotype relates to the phenotype.
对于酵母细胞来说,在其自然环境和工业相关条件下,耐受高水平的乙醇是至关重要的。我们最近通过实验对适应高浓度乙醇的酵母菌株进行了基因分型,并鉴定出与乙醇耐受性相关的突变。在这项研究中,我们通过整合来自六个进化菌株的基因组测序数据和定量蛋白质组学图谱(数据集标识符 PXD006631),以及构建蛋白质相互作用网络,在分子水平上阐明了基因型和表型之间的具体关系。我们的多组学方法表明,受基因组和蛋白质组水平变化影响的许多代谢途径发生了重布线,从产生能量和脂质的途径到转座子和参与细胞周期进程的蛋白质的差异调控。一个关键的区别在于能量产生代谢中,在这种代谢中,原始酵母菌株通过切换到呼吸作用并利用线粒体电子传递链来对乙醇做出反应。相比之下,适应乙醇的菌株似乎已经通过糖酵解和乙醇发酵主要回到了能量产生,这得到了基因组和蛋白质组水平变化的支持。这项工作与合成生物学有关,在这种生物学中,系统需要在压力条件下运行,也与工业和癌症生物学有关,因为了解基因型与表型的关系非常重要。