文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用表面增强拉曼散射对排列在固体表面的金属纳米间隙处的少量分子进行观测。

Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering.

作者信息

Sawai Yoshitaka, Takimoto Baku, Nabika Hideki, Ajito Katsuhiro, Murakoshi Kei

机构信息

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.

出版信息

J Am Chem Soc. 2007 Feb 14;129(6):1658-62. doi: 10.1021/ja067034c.


DOI:10.1021/ja067034c
PMID:17284005
Abstract

In situ Raman spectroscopic measurements with 785 nm excitation were carried out in aqueous solutions containing bipyridine derivatives. Intense Raman signals were observed when the Ag dimer structure was optimized. The SERS activity was dependent upon on the structure of the Ag dimer with a distinct gap distance, suggesting that the intense SERS originates from the gap part of the dimer. Characteristic time-dependent spectral changes were observed. Not only a spectrum which was the superposition of two bipyridine spectra but also spectra which can be assigned to one of the bipyridine derivatives were frequently observed. Observation using solutions with different concentrations proved that the spectra originated from very small numbers of molecules at the active SERS site of the dimer.

摘要

在含有联吡啶衍生物的水溶液中进行了785 nm激发的原位拉曼光谱测量。当银二聚体结构优化时观察到强烈的拉曼信号。表面增强拉曼散射(SERS)活性取决于具有明显间隙距离的银二聚体结构,这表明强烈的SERS源自二聚体的间隙部分。观察到了特征性的随时间变化的光谱变化。不仅经常观察到由两个联吡啶光谱叠加而成的光谱,还观察到可归属于其中一种联吡啶衍生物的光谱。使用不同浓度溶液进行的观察证明,这些光谱源自二聚体活性SERS位点处非常少量的分子。

相似文献

[1]
Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering.

J Am Chem Soc. 2007-2-14

[2]
Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy.

Acc Chem Res. 2008-12

[3]
Excitation wavelength dependent surface-enhanced Raman spectra of a dipping film of azobenzene-containing long-chain fatty acid on a silver mirror.

Spectrochim Acta A Mol Biomol Spectrosc. 2004-7

[4]
Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces.

J Phys Chem B. 2005-11-3

[5]
Surface-enhanced Raman spectroscopy for in situ measurements of signaling molecules (autoinducers) relevant to bacteria quorum sensing.

Appl Spectrosc. 2007-12

[6]
Polarization characteristics of surface-enhanced Raman scattering from a small number of molecules at the gap of a metal nano-dimer.

Chem Commun (Camb). 2011-3-11

[7]
New strategy for ready application of surface-enhanced resonance Raman scattering/surface-enhanced Raman scattering to chemical analysis of organic films on dielectric substrates.

Appl Spectrosc. 2005-10

[8]
A unified view of surface-enhanced Raman scattering.

Acc Chem Res. 2009-6-16

[9]
Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.

Phys Chem Chem Phys. 2009-9-14

[10]
Raman spectroscopic studies of terthiophenes for molecular electronics.

J Phys Chem B. 2006-12-28

引用本文的文献

[1]
Impact of Surface Enhanced Raman Spectroscopy in Catalysis.

ACS Nano. 2024-10-29

[2]
Enhancing the Activity of Silver Nanowire Membranes by Electrochemical Cyclic Voltammetry as Highly Sensitive Flexible SERS Substrate for On-Site Analysis.

Nanomaterials (Basel). 2021-3-9

[3]
Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic.

Int J Mol Sci. 2020-7-20

[4]
Trapping and Deposition of Dye-Molecule Nanoparticles in the Nanogap of a Plasmonic Antenna.

ACS Omega. 2018-5-3

[5]
Nanoparticle SERS substrates with 3D Raman-active volumes.

Chem Sci. 2011-8-1

[6]
Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate.

Sci Rep. 2011-10-10

[7]
Bio-imaging, detection and analysis by using nanostructures as SERS substrates.

J Mater Chem. 2011-4-14

[8]
Controlling the synthesis and assembly of silver nanostructures for plasmonic applications.

Chem Rev. 2011-6-8

[9]
Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time.

J Phys Chem Lett. 2010-2-18

[10]
Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection.

Nat Mater. 2009-12-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索