Department of Chemistry, Seoul National University, Seoul, 151-747, South Korea.
Nat Mater. 2010 Jan;9(1):60-7. doi: 10.1038/nmat2596. Epub 2009 Dec 13.
Surface-enhanced Raman scattering (SERS)-based signal amplification and detection methods using plasmonic nanostructures have been widely investigated for imaging and sensing applications. However, SERS-based molecule detection strategies have not been practically useful because there is no straightforward method to synthesize and characterize highly sensitive SERS-active nanostructures with sufficiently high yield and efficiency, which results in an extremely low cross-section area in Raman sensing. Here, we report a high-yield synthetic method for SERS-active gold-silver core-shell nanodumbbells, where the gap between two nanoparticles and the Raman-dye position and environment can be engineered on the nanoscale. Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells. These programmed nanostructure fabrication and single-DNA detection strategies open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.
基于表面增强拉曼散射(SERS)的等离子体纳米结构信号放大和检测方法已广泛应用于成像和传感领域。然而,基于 SERS 的分子检测策略尚未得到实际应用,因为没有简单的方法来合成和表征具有足够高的产率和效率的高灵敏度 SERS 活性纳米结构,这导致在拉曼传感中横截面极小。在这里,我们报告了一种用于 SERS 活性金银核壳纳米哑铃的高产率合成方法,其中可以在纳米尺度上对两个纳米颗粒之间的间隙以及拉曼染料的位置和环境进行设计。单个哑铃结构的原子力显微镜相关纳米拉曼测量表明,可以从单 DNA 键合的纳米哑铃中反复检测到拉曼信号。这些可编程纳米结构制造和单 DNA 检测策略为高产量合成光学活性智能纳米粒子以及结构可重复的基于纳米结构的单分子检测和生物测定开辟了道路。