Suppr超能文献

海胆胚胎中初级间充质细胞内陷需要蜗牛抑制因子。

The Snail repressor is required for PMC ingression in the sea urchin embryo.

作者信息

Wu Shu-Yu, McClay David R

机构信息

DCMB group, Biology Department, Duke University, Durham, NC 27708, USA.

出版信息

Development. 2007 Mar;134(6):1061-70. doi: 10.1242/dev.02805. Epub 2007 Feb 7.

Abstract

In metazoans, the epithelial-mesenchymal transition (EMT) is a crucial process for placing the mesoderm beneath the ectoderm. Primary mesenchyme cells (PMCs) at the vegetal pole of the sea urchin embryo ingress into the floor of the blastocoele from the blastula epithelium and later become the skeletogenic mesenchyme. This ingression movement is a classic EMT during which the PMCs penetrate the basal lamina, lose adherens junctions and migrate into the blastocoele. Later, secondary mesenchyme cells (SMCs) also enter the blastocoele via an EMT, but they accompany the invagination of the archenteron initially, in much the same way vertebrate mesenchyme enters the embryo along with endoderm. Here we identify a sea urchin ortholog of the Snail transcription factor, and focus on its roles regulating EMT during PMC ingression. Functional knockdown analyses of Snail in whole embryos and chimeras demonstrate that Snail is required in micromeres for PMC ingression. Snail represses the transcription of cadherin, a repression that appears evolutionarily conserved throughout the animal kingdom. Furthermore, Snail expression is required for endocytosis of cadherin, a cellular activity that accompanies PMC ingression. Perturbation studies position Snail in the sea urchin micromere-PMC gene regulatory network (GRN), downstream of Pmar1 and Alx1, and upstream of several PMC-expressed proteins. Taken together, our findings indicate that Snail plays an essential role in PMCs to control the EMT process, in part through its repression of cadherin expression during PMC ingression, and in part through its role in the endocytosis that helps convert an epithelial cell to a mesenchyme cell.

摘要

在多细胞动物中,上皮-间质转化(EMT)是将中胚层置于外胚层之下的关键过程。海胆胚胎植物极的初级间充质细胞(PMC)从囊胚上皮侵入囊胚腔底部,随后成为造骨间充质。这种侵入运动是一种典型的EMT,在此过程中,PMC穿透基膜,失去黏着连接并迁移到囊胚腔中。后来,次级间充质细胞(SMC)也通过EMT进入囊胚腔,但它们最初伴随着原肠的内陷,这与脊椎动物间充质与内胚层一起进入胚胎的方式非常相似。在这里,我们鉴定出一种海胆Snail转录因子的直系同源物,并着重研究其在PMC侵入过程中调节EMT的作用。对整个胚胎和嵌合体中Snail的功能敲低分析表明,Snail是微细胞中PMC侵入所必需的。Snail抑制钙黏蛋白的转录,这种抑制作用在整个动物界似乎在进化上是保守的。此外,Snail的表达是钙黏蛋白内吞作用所必需的,这是一种伴随PMC侵入的细胞活动。扰动研究将Snail定位在海胆微细胞-PMC基因调控网络(GRN)中,位于Pmar1和Alx1的下游,以及几种PMC表达蛋白的上游。综上所述,我们的研究结果表明,Snail在PMC中发挥着至关重要的作用,以控制EMT过程,部分是通过其在PMC侵入过程中对钙黏蛋白表达的抑制,部分是通过其在帮助上皮细胞转化为间充质细胞的内吞作用中的作用。

相似文献

1
The Snail repressor is required for PMC ingression in the sea urchin embryo.
Development. 2007 Mar;134(6):1061-70. doi: 10.1242/dev.02805. Epub 2007 Feb 7.
2
Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition.
Birth Defects Res C Embryo Today. 2007 Dec;81(4):241-52. doi: 10.1002/bdrc.20113.
5
Primary mesenchyme cell patterning during the early stages following ingression.
Dev Biol. 2003 Feb 1;254(1):68-78. doi: 10.1016/s0012-1606(02)00025-8.
6
7
The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
Dev Biol. 2001 Nov 1;239(1):132-47. doi: 10.1006/dbio.2001.0426.
8
Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo.
Dev Biol. 2008 Jul 15;319(2):406-15. doi: 10.1016/j.ydbio.2008.04.003. Epub 2008 Apr 15.
10
Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation.
Development. 2013 Oct;140(20):4214-25. doi: 10.1242/dev.100479. Epub 2013 Sep 11.

引用本文的文献

2
Thyroid hormone membrane receptor binding and transcriptional regulation in the sea urchin .
Front Endocrinol (Lausanne). 2023 May 26;14:1195733. doi: 10.3389/fendo.2023.1195733. eCollection 2023.
3
Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins.
Nat Ecol Evol. 2022 Dec;6(12):1907-1920. doi: 10.1038/s41559-022-01906-9. Epub 2022 Oct 20.
5
Epithelial-mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis.
Philos Trans R Soc Lond B Biol Sci. 2020 Oct 12;375(1809):20200087. doi: 10.1098/rstb.2020.0087. Epub 2020 Aug 24.
6
The Physical Mechanisms of Gastrulation: Mesoderm and Endoderm Invagination.
Genetics. 2020 Mar;214(3):543-560. doi: 10.1534/genetics.119.301292.
7
Gastrulation in the sea urchin.
Curr Top Dev Biol. 2020;136:195-218. doi: 10.1016/bs.ctdb.2019.08.004. Epub 2019 Oct 22.
10
EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration.
Dev Cell. 2018 Jun 18;45(6):681-695.e4. doi: 10.1016/j.devcel.2018.05.027.

本文引用的文献

2
Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin.
Oncogene. 2006 Nov 16;25(54):7117-30. doi: 10.1038/sj.onc.1209701. Epub 2006 Jun 5.
4
p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos.
Development. 2006 Jan;133(1):21-32. doi: 10.1242/dev.02160. Epub 2005 Nov 30.
7
Characterization and expression of two matrix metalloproteinase genes during sea urchin development.
Gene Expr Patterns. 2005 Aug;5(6):727-32. doi: 10.1016/j.modgep.2005.04.008.
8
Unraveling signalling cascades for the Snail family of transcription factors.
Cell Signal. 2005 May;17(5):535-47. doi: 10.1016/j.cellsig.2004.10.011.
9
Disassembling adherens junctions: breaking up is hard to do.
Trends Cell Biol. 2005 Jan;15(1):19-26. doi: 10.1016/j.tcb.2004.11.002.
10
A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis.
PLoS Biol. 2005 Jan;3(1):e11. doi: 10.1371/journal.pbio.0030011. Epub 2004 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验