Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
Department of Genetics, Evolution and Environment, University College London, London, UK.
BMC Biol. 2021 Jan 18;19(1):9. doi: 10.1186/s12915-020-00937-7.
Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers.
Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements.
We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.
再生是指创伤后重新生长身体部位或组织的能力,它在后生动物中广泛存在。参与再生的细胞可以来自未分化的增殖细胞池,也可以从现有的分化组织中募集。这两种机制都在不同的门中被描述过;然而,不同动物用来恢复丢失组织的细胞的分子和细胞机制以及参与再生的细胞的来源在很大程度上仍然未知。棘皮动物是后生动物的一个分支,在所有现存的类群中都表现出惊人的幼虫和成体再生能力。在这里,我们使用短腕海星(Amphiura filiformis)来研究骨骼再生过程中涉及的细胞的起源和分化,使用了显微镜技术和分子标记物的组合。
我们在不同的再生阶段进行的超微结构分析,确定了一群形态上未分化的细胞,这些细胞与再生的口面体腔的增殖上皮密切接触。这些细胞表达骨骼形成标记基因,如转录因子 alx1 和分化基因 c-lectin 和 msp130L,并表现出从口面体腔向表皮的形态分化梯度。更靠近表皮的细胞与正在发育的骨针接触,具有成熟的骨骼细胞(骨细胞)的形态,并表达几个骨骼形成转录因子和分化基因。此外,随着再生的进行,骨细胞在不同的骨骼元素中表现出不同的基因组合表达。
我们假设骨细胞前体起源于增殖的口面体腔的上皮。随着这些细胞向表皮迁移,它们分化并开始分泌骨针。此外,我们的研究表明,参与骨骼再生的分子和细胞过程类似于骨骼发育过程中使用的过程,暗示了在成年再生过程中可能存在发育程序的保守性。最后,我们强调棘皮动物骨骼形成中涉及的许多基因也在脊椎动物骨骼形成中发挥作用,这表明后生动物内骨骼途径可能有共同的起源。