Okassa Lazare Ngaboni, Marchais Hervé, Douziech-Eyrolles Laurence, Hervé Katel, Cohen-Jonathan Simone, Munnier Emilie, Soucé Martin, Linassier Claude, Dubois Pierre, Chourpa Igor
Magnetically Targeting Anticancer Drugs Research Group, School of Pharmaceutical Sciences, University François Rabelais of Tours, France.
Eur J Pharm Biopharm. 2007 Aug;67(1):31-8. doi: 10.1016/j.ejpb.2006.12.020. Epub 2007 Jan 12.
This work describes a method for preparation of sub-micron poly(d,l-lactide-co-glycolide) (PLGA) particles loaded with magnetite/maghemite nanoparticles to be used as magnetically-controlled drug delivery systems. The methodology of simple emulsion/evaporation technique has been optimized to provide greater iron oxide loading rates. The surface of iron oxide nanoparticles was coated with oleic acid (OA) for better compatibility with organic phase containing the polymer. To increase their loading into polymeric sub-micron particles, we added dried iron oxide nanoparticles in variable ferrite/polymer ratio of 1:1; 1:1.5 and 1:2 w/w. Composition and surface properties of obtained composite sub-micron particles have been studied in comparison with those of ferrite-free PLGA sub-micron particles. Presence of magnetite/maghemite was qualitatively confirmed by characteristic bands in the FT-IR spectra of composite sub-micron particles. Quantification of the incorporated iron was achieved by AAS. The highest incorporation rates of ferrite (up to 13.5% w/w) were observed with initial ferrite/polymer ratio of 1:1 w/w. TEM images indicate that the composite sub-micron particles are nearly spherical. According to laser granulometry data, average hydrodynamic diameter of the composite sub-micron particles is close to 280nm, independently of ferrite presence. Electrophoretic properties (zeta potential) were very similar for both composite and ferrite-free PLGA sub-micron particles, thus indicating that the polymeric coating should mask the surface of ferrite nanoparticles buried inside. Finally, composite sub-micron particles exhibit superparamagnetic property.
这项工作描述了一种制备负载磁铁矿/磁赤铁矿纳米颗粒的亚微米聚(d,l-丙交酯-共-乙交酯)(PLGA)颗粒的方法,该颗粒将用作磁控药物递送系统。简单乳液/蒸发技术的方法已得到优化,以提供更高的氧化铁负载率。氧化铁纳米颗粒的表面用油酸(OA)包覆,以便与含聚合物的有机相具有更好的相容性。为了增加它们在聚合物亚微米颗粒中的负载量,我们以1:1、1:1.5和1:2 w/w的可变铁氧体/聚合物比例添加干燥的氧化铁纳米颗粒。与不含铁氧体的PLGA亚微米颗粒相比,已对所得复合亚微米颗粒的组成和表面性质进行了研究。通过复合亚微米颗粒的FT-IR光谱中的特征带定性确认了磁铁矿/磁赤铁矿的存在。通过原子吸收光谱法实现了对掺入铁的定量分析。当初始铁氧体/聚合物比例为1:1 w/w时,观察到铁氧体的最高掺入率(高达13.5% w/w)。透射电子显微镜图像表明复合亚微米颗粒接近球形。根据激光粒度分析数据,复合亚微米颗粒的平均流体动力学直径接近280nm,与铁氧体的存在无关。复合PLGA亚微米颗粒和不含铁氧体的PLGA亚微米颗粒的电泳性质(zeta电位)非常相似,因此表明聚合物涂层应掩盖埋在内部的铁氧体纳米颗粒的表面。最后,复合亚微米颗粒表现出超顺磁性。