Sudame Atul, Maity Dipak
Department of Mechanical Engineering, School of Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida 201314, India.
Integrated Nanosystems Development Institute, Indiana University Indianapolis, Indianapolis, IN 46202, USA.
Bioengineering (Basel). 2025 Jun 30;12(7):715. doi: 10.3390/bioengineering12070715.
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention for Magnetic Fluid Hyperthermia (MFH)-based cancer therapy. However, achieving high heating efficiency under a biologically safe Alternating Magnetic Field (AMF) remains a challenge. This study investigates the synthesis and optimization of SPIONs encapsulated in TPGS-stabilized PLGA nanoparticles (TPS-NPs) using a modified single emulsion solvent evaporation (M-SESE) method. The aim was to achieve efficient magnetic heating under biologically safe AMF conditions while maintaining biocompatibility and colloidal stability, making these magnetic nanoplatforms suitable for MFH-based cancer treatment. TPS-NPs were characterized using various techniques, including Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), and Superconducting Quantum Interference Device (SQUID) magnetometry, to evaluate their hydrodynamic size (Dh), zeta potential (ζ), encapsulation efficiency, and superparamagnetic properties. Calorimetric MFH studies demonstrated superior heating efficiency, with Specific Absorption Rate (SAR) and Intrinsic Loss Power (ILP) values optimized at an AMF of 4.1 GAms, remaining within Hergt's biological safety limit (~5 GAms). These findings suggest that SPION-encapsulated TPS-NPs exhibit enhanced heat induction, making them promising candidates for MFH-based cancer therapy. The study highlights their potential as multifunctional nanoplatforms for magnetic hyperthermia therapy, paving the way for clinical translation in oncology for advanced cancer treatment.
超顺磁性氧化铁纳米颗粒(SPIONs)在基于磁流体热疗(MFH)的癌症治疗中受到了广泛关注。然而,在生物安全的交变磁场(AMF)下实现高加热效率仍然是一个挑战。本研究采用改进的单乳液溶剂蒸发(M-SESE)方法,研究了包裹在TPGS稳定的PLGA纳米颗粒(TPS-NPs)中的SPIONs的合成及优化。目的是在生物安全的AMF条件下实现高效磁热效应,同时保持生物相容性和胶体稳定性,使这些磁性纳米平台适用于基于MFH的癌症治疗。使用多种技术对TPS-NPs进行了表征,包括动态光散射(DLS)、原子力显微镜(AFM)、透射电子显微镜(TEM)和超导量子干涉仪(SQUID)磁力测量,以评估其流体动力学尺寸(Dh)、zeta电位(ζ)、包封率和超顺磁特性。量热法MFH研究表明,加热效率更高,在4.1 GAms的AMF下,比吸收率(SAR)和固有损耗功率(ILP)值得到优化,仍在Hergt的生物安全极限(约5 GAms)内。这些发现表明,包裹SPION的TPS-NPs具有增强的热诱导能力,使其成为基于MFH的癌症治疗的有前途的候选者。该研究突出了它们作为磁热疗多功能纳米平台的潜力,为肿瘤学中晚期癌症治疗的临床转化铺平了道路。