Giannoglou George D, Chatzizisis Yiannis S, Koutkias Vassilis, Kompatsiaris Ioannis, Papadogiorgaki Maria, Mezaris Vasileios, Parissi Eirini, Diamantopoulos Panagiotis, Strintzis Michael G, Maglaveras Nicos, Parcharidis George E, Louridas George E
Cardiovascular Engineering and Atherosclerosis Laboratory, 1st Cardiology Department, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.
Comput Biol Med. 2007 Sep;37(9):1292-302. doi: 10.1016/j.compbiomed.2006.12.003. Epub 2007 Feb 8.
The detection of lumen and media-adventitia borders in intravascular ultrasound (IVUS) images constitutes a necessary step for the quantitative assessment of atherosclerotic lesions. To date, most of the segmentation methods reported are either manual, or semi-automated, requiring user interaction at some extent, which increases the analysis time and detection errors. In this work, a fully automated approach for lumen and media-adventitia border detection is presented based on an active contour model, the initialization of which is performed via an analysis mechanism that takes advantage of the inherent morphologic characteristics of IVUS images. The in vivo validation of the proposed model in human coronary arteries revealed that it is a feasible approach, enabling accurate and rapid segmentation of multiple IVUS images.
在血管内超声(IVUS)图像中检测管腔以及中膜-外膜边界是对动脉粥样硬化病变进行定量评估的必要步骤。迄今为止,所报道的大多数分割方法要么是手动的,要么是半自动的,在某种程度上需要用户交互,这增加了分析时间和检测误差。在这项工作中,基于主动轮廓模型提出了一种用于管腔和中膜-外膜边界检测的全自动方法,该模型的初始化通过一种分析机制来执行,该机制利用了IVUS图像固有的形态特征。在人体冠状动脉中对所提出模型进行的体内验证表明,它是一种可行的方法,能够准确、快速地分割多个IVUS图像。