Papadogiorgaki Maria, Mezaris Vasileios, Chatzizisis Yiannis S, Giannoglou George D, Kompatsiaris Ioannis
Informatics and Telematics Institute (ITI)/ Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece.
Ultrasound Med Biol. 2008 Sep;34(9):1482-98. doi: 10.1016/j.ultrasmedbio.2008.01.022. Epub 2008 Apr 24.
Intravascular ultrasound (IVUS) constitutes a valuable technique for the diagnosis of coronary atherosclerosis. The detection of lumen and media-adventitia borders in IVUS images represents a necessary step towards the reliable quantitative assessment of atherosclerosis. In this work, a fully automated technique for the detection of lumen and media-adventitia borders in IVUS images is presented. This comprises two different steps for contour initialization: one for each corresponding contour of interest and a procedure for the refinement of the detected contours. Intensity information, as well as the result of texture analysis, generated by means of a multilevel discrete wavelet frames decomposition, are used in two different techniques for contour initialization. For subsequently producing smooth contours, three techniques based on low-pass filtering and radial basis functions are introduced. The different combinations of the proposed methods are experimentally evaluated in large datasets of IVUS images derived from human coronary arteries. It is demonstrated that our proposed segmentation approaches can quickly and reliably perform automated segmentation of IVUS images.
血管内超声(IVUS)是诊断冠状动脉粥样硬化的一项重要技术。在IVUS图像中检测管腔和中膜-外膜边界是对动脉粥样硬化进行可靠定量评估的必要步骤。在这项工作中,提出了一种用于检测IVUS图像中管腔和中膜-外膜边界的全自动技术。这包括轮廓初始化的两个不同步骤:一个针对每个相应的感兴趣轮廓,以及一个用于细化检测到的轮廓的过程。通过多级离散小波框架分解生成的强度信息以及纹理分析结果,被用于两种不同的轮廓初始化技术。为了随后生成平滑的轮廓,引入了三种基于低通滤波和径向基函数的技术。在所提出方法的不同组合在源自人类冠状动脉的大量IVUS图像数据集上进行了实验评估。结果表明,我们提出的分割方法能够快速且可靠地对IVUS图像进行自动分割。