Li Guangyong, Xi Ning, Wang Donna H
College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.
Nanomedicine. 2005 Mar;1(1):31-40. doi: 10.1016/j.nano.2004.11.005.
Atomic force microscopy (AFM) is a powerful and widely used imaging technique that can visualize single molecules both in air and solution. Using the AFM tip as an end-effector, an atomic force microscope can be modified into a nanorobot that can manipulate objects in nanoscale.
By functionalizing the AFM tip with specific antibodies, the nanorobot is able to identify specific types of receptors on cells' membrane. It is similar to the fluorescent optical microscopy but with higher resolution. By locally updating the AFm image based on interaction force infromation and objects' model during nanomanipulation, real-time visual feedback is obtained through the augmented reality interface.
The development of the AFM-based nanorobotic system will enable us to simultaneously conduct in situ imaging, sensing, and manipulation at nanometer scale (eg, protein and DNA levels).
This new technology opens a promising way to individually study the function of biological system in molecular level.
原子力显微镜(AFM)是一种强大且广泛应用的成像技术,能够在空气和溶液中可视化单个分子。利用原子力显微镜探针作为末端执行器,原子力显微镜可被改装成能在纳米尺度操纵物体的纳米机器人。
通过用特定抗体对原子力显微镜探针进行功能化,纳米机器人能够识别细胞膜上特定类型的受体。它类似于荧光光学显微镜,但具有更高的分辨率。在纳米操作过程中,基于相互作用力信息和物体模型对原子力显微镜图像进行局部更新,通过增强现实界面获得实时视觉反馈。
基于原子力显微镜的纳米机器人系统的发展将使我们能够在纳米尺度(如蛋白质和DNA水平)同时进行原位成像、传感和操纵。
这项新技术为在分子水平上单独研究生物系统的功能开辟了一条有前景的道路。