Suppr超能文献

细胞水平的机器人手术:活角质形成细胞中间丝的纳米解剖

Cellular level robotic surgery: Nanodissection of intermediate filaments in live keratinocytes.

作者信息

Yang Ruiguo, Song Bo, Sun Zhiyong, Lai King Wai Chiu, Fung Carmen Kar Man, Patterson Kevin C, Seiffert-Sinha Kristina, Sinha Animesh A, Xi Ning

机构信息

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA.

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong.

出版信息

Nanomedicine. 2015 Jan;11(1):137-45. doi: 10.1016/j.nano.2014.08.008. Epub 2014 Sep 6.

Abstract

We present the nanosurgery on the cytoskeleton of live cells using AFM based nanorobotics to achieve adhesiolysis and mimic the effect of pathophysiological modulation of intercellular adhesion. Nanosurgery successfully severs the intermediate filament bundles and disrupts cell-cell adhesion similar to the desmosomal protein disassembly in autoimmune disease, or the cationic modulation of desmosome formation. Our nanomechanical analysis revealed that adhesion loss results in a decrease in cellular stiffness in both cases of biochemical modulation of the desmosome junctions and mechanical disruption of intercellular adhesion, supporting the notion that intercellular adhesion through intermediate filaments anchors the cell structure as focal adhesion does and that intermediate filaments are integral components in cell mechanical integrity. The surgical process could potentially help reveal the mechanism of autoimmune pathology-induced cell-cell adhesion loss as well as its related pathways that lead to cell apoptosis.

摘要

我们展示了使用基于原子力显微镜的纳米机器人对活细胞的细胞骨架进行纳米手术,以实现粘连松解,并模拟细胞间粘附的病理生理调节作用。纳米手术成功地切断了中间丝束,并破坏了细胞间粘附,类似于自身免疫性疾病中桥粒蛋白的分解,或桥粒形成的阳离子调节。我们的纳米力学分析表明,在桥粒连接的生化调节和细胞间粘附的机械破坏这两种情况下,粘附丧失都会导致细胞硬度降低,这支持了这样一种观点,即通过中间丝的细胞间粘附像粘着斑一样锚定细胞结构,并且中间丝是细胞机械完整性的重要组成部分。该手术过程可能有助于揭示自身免疫病理诱导的细胞间粘附丧失的机制及其导致细胞凋亡的相关途径。

相似文献

1
Cellular level robotic surgery: Nanodissection of intermediate filaments in live keratinocytes.
Nanomedicine. 2015 Jan;11(1):137-45. doi: 10.1016/j.nano.2014.08.008. Epub 2014 Sep 6.
2
Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics.
Cold Spring Harb Perspect Biol. 2017 Jun 1;9(6):a029157. doi: 10.1101/cshperspect.a029157.
3
Plakoglobin is required for effective intermediate filament anchorage to desmosomes.
J Invest Dermatol. 2008 Nov;128(11):2665-2675. doi: 10.1038/jid.2008.141. Epub 2008 May 22.
4
Cytoskeletal anchorage of different Dsg3 pools revealed by combination of hybrid STED/SMFS-AFM.
Cell Mol Life Sci. 2023 Jan 5;80(1):25. doi: 10.1007/s00018-022-04681-9.
5
The keratin-desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis.
Cell Mol Life Sci. 2020 Feb;77(3):543-558. doi: 10.1007/s00018-019-03198-y. Epub 2019 Jun 26.
8
Roles for Ndel1 in keratin organization and desmosome function.
Mol Biol Cell. 2021 Oct 1;32(20):ar2. doi: 10.1091/mbc.E21-02-0087. Epub 2021 Jul 28.
10
Mechanical loading of desmosomes depends on the magnitude and orientation of external stress.
Nat Commun. 2018 Dec 11;9(1):5284. doi: 10.1038/s41467-018-07523-0.

引用本文的文献

1
Miniature origami robot for various biological micromanipulations.
Nat Commun. 2025 Mar 17;16(1):2633. doi: 10.1038/s41467-025-57815-5.
2
Efficient Preparation of a Magnetic Helical Carbon Nanomotor for Targeted Anticancer Drug Delivery.
ACS Nanosci Au. 2022 Nov 25;3(1):94-102. doi: 10.1021/acsnanoscienceau.2c00042. eCollection 2023 Feb 15.
3
Advanced tools and methods for single-cell surgery.
Microsyst Nanoeng. 2022 Apr 29;8:47. doi: 10.1038/s41378-022-00376-0. eCollection 2022.
4
Nanosurgical Manipulation of Titin and Its M-Complex.
Nanomaterials (Basel). 2022 Jan 6;12(2):178. doi: 10.3390/nano12020178.
5
Techniques to stimulate and interrogate cell-cell adhesion mechanics.
Extreme Mech Lett. 2018 Apr;20:125-139. doi: 10.1016/j.eml.2017.12.002. Epub 2017 Dec 7.

本文引用的文献

1
Atomic force microscopy as nanorobot.
Methods Mol Biol. 2011;736:485-503. doi: 10.1007/978-1-61779-105-5_29.
2
Quantitative analysis of human keratinocyte cell elasticity using atomic force microscopy (AFM).
IEEE Trans Nanobioscience. 2011 Mar;10(1):9-15. doi: 10.1109/TNB.2011.2113397. Epub 2011 Feb 24.
3
Prospects and developments in cell and embryo laser nanosurgery.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Jan-Feb;1(1):11-25. doi: 10.1002/wnan.29.
4
An atomic force microscope nanoscalpel for nanolithography and biological applications.
Nanotechnology. 2009 Nov 4;20(44):445302. doi: 10.1088/0957-4484/20/44/445302. Epub 2009 Oct 5.
5
Nanomechanical properties of vimentin intermediate filament dimers.
Nanotechnology. 2009 Oct 21;20(42):425101. doi: 10.1088/0957-4484/20/42/425101. Epub 2009 Sep 25.
6
Investigation of human keratinocyte cell adhesion using atomic force microscopy.
Nanomedicine. 2010 Feb;6(1):191-200. doi: 10.1016/j.nano.2009.05.008. Epub 2009 Jul 17.
8
Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness.
Biophys J. 2009 Mar 4;96(5):2009-22. doi: 10.1016/j.bpj.2008.10.072.
9
Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology.
Nat Nanotechnol. 2008 May;3(5):261-9. doi: 10.1038/nnano.2008.100.
10
High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy.
Nanomedicine. 2008 Sep;4(3):215-25. doi: 10.1016/j.nano.2008.03.005. Epub 2008 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验