Kleiner Ariel, Shakhnovich Eugene
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.
Biophys J. 2007 Mar 15;92(6):2054-61. doi: 10.1529/biophysj.106.081257. Epub 2007 Feb 9.
The mechanical unfolding of proteins under a stretching force has an important role in living systems and is a logical extension of the more general protein folding problem. Recent advances in experimental methodology have allowed the stretching of single molecules, thus rendering this process ripe for computational study. We use all-atom Monte Carlo simulation with a Gō-type potential to study the mechanical unfolding pathway of ubiquitin. A detailed, robust, well-defined pathway is found, confirming existing results in this vein though using a different model. Additionally, we identify the protein's fundamental stabilizing secondary structure interactions in the presence of a stretching force and show that this fundamental stabilizing role does not persist in the absence of mechanical stress. The apparent success of simulation methods in studying ubiquitin's mechanical unfolding pathway indicates their potential usefulness for future study of the stretching of other proteins and the relationship between protein structure and the response to mechanical deformation.
在拉伸力作用下蛋白质的机械展开在生命系统中具有重要作用,并且是更普遍的蛋白质折叠问题的合理延伸。实验方法的最新进展使得单分子拉伸成为可能,从而使这个过程适合进行计算研究。我们使用具有Gō型势的全原子蒙特卡罗模拟来研究泛素的机械展开途径。我们发现了一条详细、稳健且明确的途径,尽管使用了不同的模型,但证实了这方面的现有结果。此外,我们确定了在拉伸力存在下蛋白质基本的稳定二级结构相互作用,并表明在没有机械应力的情况下这种基本的稳定作用并不持续。模拟方法在研究泛素机械展开途径方面的明显成功表明它们在未来研究其他蛋白质的拉伸以及蛋白质结构与机械变形响应之间的关系方面具有潜在用途。