Suppr超能文献

通过具有Go型势的全原子蒙特卡罗模拟对泛素进行机械展开。

The mechanical unfolding of ubiquitin through all-atom Monte Carlo simulation with a Go-type potential.

作者信息

Kleiner Ariel, Shakhnovich Eugene

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2007 Mar 15;92(6):2054-61. doi: 10.1529/biophysj.106.081257. Epub 2007 Feb 9.

Abstract

The mechanical unfolding of proteins under a stretching force has an important role in living systems and is a logical extension of the more general protein folding problem. Recent advances in experimental methodology have allowed the stretching of single molecules, thus rendering this process ripe for computational study. We use all-atom Monte Carlo simulation with a Gō-type potential to study the mechanical unfolding pathway of ubiquitin. A detailed, robust, well-defined pathway is found, confirming existing results in this vein though using a different model. Additionally, we identify the protein's fundamental stabilizing secondary structure interactions in the presence of a stretching force and show that this fundamental stabilizing role does not persist in the absence of mechanical stress. The apparent success of simulation methods in studying ubiquitin's mechanical unfolding pathway indicates their potential usefulness for future study of the stretching of other proteins and the relationship between protein structure and the response to mechanical deformation.

摘要

在拉伸力作用下蛋白质的机械展开在生命系统中具有重要作用,并且是更普遍的蛋白质折叠问题的合理延伸。实验方法的最新进展使得单分子拉伸成为可能,从而使这个过程适合进行计算研究。我们使用具有Gō型势的全原子蒙特卡罗模拟来研究泛素的机械展开途径。我们发现了一条详细、稳健且明确的途径,尽管使用了不同的模型,但证实了这方面的现有结果。此外,我们确定了在拉伸力存在下蛋白质基本的稳定二级结构相互作用,并表明在没有机械应力的情况下这种基本的稳定作用并不持续。模拟方法在研究泛素机械展开途径方面的明显成功表明它们在未来研究其他蛋白质的拉伸以及蛋白质结构与机械变形响应之间的关系方面具有潜在用途。

相似文献

1
The mechanical unfolding of ubiquitin through all-atom Monte Carlo simulation with a Go-type potential.
Biophys J. 2007 Mar 15;92(6):2054-61. doi: 10.1529/biophysj.106.081257. Epub 2007 Feb 9.
3
Mechanical unfolding of ubiquitin molecules.
J Chem Phys. 2005 Nov 15;123(19):194903. doi: 10.1063/1.2046609.
4
Thermal versus mechanical unfolding of ubiquitin.
Proteins. 2006 Nov 15;65(3):759-66. doi: 10.1002/prot.21145.
5
Topography of the free-energy landscape probed via mechanical unfolding of proteins.
J Chem Phys. 2005 Jun 15;122(23):234915. doi: 10.1063/1.1931659.
6
The folding pathway of ubiquitin from all-atom molecular dynamics simulations.
Biophys Chem. 2004 Oct 1;111(2):159-71. doi: 10.1016/j.bpc.2004.05.009.
8
How do chemical denaturants affect the mechanical folding and unfolding of proteins?
J Mol Biol. 2008 Jan 4;375(1):316-24. doi: 10.1016/j.jmb.2007.10.024. Epub 2007 Oct 15.
9
Reversible mechanical unfolding of single ubiquitin molecules.
Biophys J. 2004 Dec;87(6):3995-4006. doi: 10.1529/biophysj.104.042754. Epub 2004 Sep 10.
10
Periodic forces trigger a complex mechanical response in ubiquitin.
J Mol Biol. 2009 Jul 17;390(3):443-56. doi: 10.1016/j.jmb.2009.04.071. Epub 2009 May 6.

引用本文的文献

1
The Role of Data in Model Building and Prediction: A Survey Through Examples.
Entropy (Basel). 2018 Oct 22;20(10):807. doi: 10.3390/e20100807.
2
Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding.
Science. 2019 Aug 2;365(6452). doi: 10.1126/science.aax1033. Epub 2019 Jun 27.
3
Nanomechanics of β-rich proteins related to neuronal disorders studied by AFM, all-atom and coarse-grained MD methods.
J Mol Model. 2014 Mar;20(3):2144. doi: 10.1007/s00894-014-2144-5. Epub 2014 Feb 22.
4
Cystatin a, a potential common link for mutant myocilin causative glaucoma.
PLoS One. 2012;7(5):e36301. doi: 10.1371/journal.pone.0036301. Epub 2012 May 15.
5
Protein high-force pulling simulations yield low-force results.
PLoS One. 2012;7(4):e34781. doi: 10.1371/journal.pone.0034781. Epub 2012 Apr 18.
6
Folding simulations of the A and B domains of protein G.
J Phys Chem B. 2012 Jun 14;116(23):6645-53. doi: 10.1021/jp210497h. Epub 2012 Jan 24.
8
Water's role in the force-induced unfolding of ubiquitin.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19284-9. doi: 10.1073/pnas.1013159107. Epub 2010 Oct 25.
9
Molecular basis for the structural stability of an enclosed β-barrel loop.
J Mol Biol. 2010 Sep 17;402(2):475-89. doi: 10.1016/j.jmb.2010.07.035. Epub 2010 Jul 23.
10
Osmolyte-induced separation of the mechanical folding phases of ubiquitin.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10540-5. doi: 10.1073/pnas.0902090106. Epub 2009 Jun 16.

本文引用的文献

1
Mechanical unfolding revisited through a simple but realistic model.
J Chem Phys. 2006 Apr 21;124(15):154909. doi: 10.1063/1.2185100.
2
Mechanical resistance of proteins explained using simple molecular models.
Biophys J. 2006 Jan 1;90(1):287-97. doi: 10.1529/biophysj.105.071035. Epub 2005 Oct 7.
3
Dissecting the mechanical unfolding of ubiquitin.
Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13427-32. doi: 10.1073/pnas.0501581102. Epub 2005 Sep 7.
4
Topography of the free-energy landscape probed via mechanical unfolding of proteins.
J Chem Phys. 2005 Jun 15;122(23):234915. doi: 10.1063/1.1931659.
6
Mechanically unfolding the small, topologically simple protein L.
Biophys J. 2005 Jul;89(1):506-19. doi: 10.1529/biophysj.105.061465. Epub 2005 Apr 29.
8
Multiple probes reveal a native-like intermediate during low-temperature refolding of ubiquitin.
J Mol Biol. 2004 Jun 25;340(1):115-25. doi: 10.1016/j.jmb.2004.04.048.
9
The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7299-304. doi: 10.1073/pnas.0400033101. Epub 2004 Apr 27.
10
Force-clamp spectroscopy monitors the folding trajectory of a single protein.
Science. 2004 Mar 12;303(5664):1674-8. doi: 10.1126/science.1092497.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验