Suppr超能文献

一种峰频率适应机制。

A mechanism for spike frequency adaptation.

作者信息

Partridge L D, Stevens C F

机构信息

Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, U.S.A.

出版信息

J Physiol. 1976 Apr;256(2):315-32. doi: 10.1113/jphysiol.1976.sp011327.

Abstract
  1. Spike frequency adaptation was studied in large neurones of the marine molluscs Archidoris montereyensis and Anisodoris nobilis. These cells respond to a current step with a rapid rise in spike frequency followed by a gradual decline to a new steady level.2. An exponentially declining current, I(s), was measured when the cell was voltage clamped following an adapting spike train. The initial amplitude of this current depended on the preceding number of spikes and on the voltage to which the cell was clamped. A reversal potential (V(s)) for this current was obtained by clamping to various potentials following a spike train. The time constant (tau(s)) of decay of the current was dependent upon the clamping potential.3. Clamping the membrane potential to a constant test level from various initial levels initiates an exponentially decaying current of similar time constant. The voltage dependence of the steady-state conductance (g(s)a(s)(V, infinity)) associated with this current was determined using this technique.4. Equations for neural repetitive firing (Connor & Stevens, 1971c) were modified by the addition of a term describing these slow membrane currents: [Formula: see text]. The solution to the modified equation was in good agreement with the spike frequency adaptation observed in these cells.
摘要
  1. 对海生软体动物蒙特雷阿氏多彩海牛(Archidoris montereyensis)和高贵异鳃海牛(Anisodoris nobilis)的大型神经元进行了锋频率适应性研究。这些细胞对电流阶跃的反应是锋频率迅速上升,随后逐渐下降至新的稳定水平。

  2. 在适应的锋电位序列之后对细胞进行电压钳制时,测量到呈指数衰减的电流I(s)。该电流的初始幅度取决于先前的锋电位数量以及细胞被钳制的电压。通过在锋电位序列之后钳制到不同电位来获得该电流的反转电位(V(s))。电流衰减的时间常数(tau(s))取决于钳制电位。

  3. 将膜电位从不同的初始水平钳制到恒定的测试水平会引发具有相似时间常数的指数衰减电流。使用该技术确定了与该电流相关的稳态电导(g(s)a(s)(V, infinity))的电压依赖性。

  4. 通过添加一个描述这些缓慢膜电流的项对神经重复放电方程(Connor和Stevens,1971c)进行了修改:[公式:见原文]。修改后方程的解与在这些细胞中观察到的锋频率适应性非常吻合。

相似文献

1
A mechanism for spike frequency adaptation.
J Physiol. 1976 Apr;256(2):315-32. doi: 10.1113/jphysiol.1976.sp011327.
2
Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices.
J Physiol. 1996 May 15;493 ( Pt 1)(Pt 1):83-97. doi: 10.1113/jphysiol.1996.sp021366.
4
Repetitive firing in layer V neurons from cat neocortex in vitro.
J Neurophysiol. 1984 Aug;52(2):264-77. doi: 10.1152/jn.1984.52.2.264.
5
A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons.
J Neurophysiol. 2004 May;91(5):1963-80. doi: 10.1152/jn.00924.2003. Epub 2003 Dec 31.
6
Calcium coding and adaptive temporal computation in cortical pyramidal neurons.
J Neurophysiol. 1998 Mar;79(3):1549-66. doi: 10.1152/jn.1998.79.3.1549.
8
Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
J Neurophysiol. 1996 Aug;76(2):651-67. doi: 10.1152/jn.1996.76.2.651.
9
Spike frequency adaptation studied in hypoglossal motoneurons of the rat.
J Neurophysiol. 1995 May;73(5):1799-810. doi: 10.1152/jn.1995.73.5.1799.
10
Non-synaptic depolarizing potentials in rat supraoptic neurones recorded in vitro.
J Physiol. 1986 Jul;376:493-505. doi: 10.1113/jphysiol.1986.sp016166.

引用本文的文献

1
In Vitro Patch-Clamp.
Methods Mol Biol. 2024;2794:221-244. doi: 10.1007/978-1-0716-3810-1_19.
2
Network Model With Reduced Metabolic Rate Predicts Spatial Synchrony of Neuronal Activity.
Front Comput Neurosci. 2021 Oct 7;15:738362. doi: 10.3389/fncom.2021.738362. eCollection 2021.
3
Multistable properties of human subthalamic nucleus neurons in Parkinson's disease.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24326-24333. doi: 10.1073/pnas.1912128116. Epub 2019 Nov 11.
4
Spike Frequency Adaptation in Neurons of the Central Nervous System.
Exp Neurobiol. 2017 Aug;26(4):179-185. doi: 10.5607/en.2017.26.4.179. Epub 2017 Aug 29.
5
Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units.
J Neurophysiol. 2015 Mar 1;113(5):1310-22. doi: 10.1152/jn.00777.2014. Epub 2014 Dec 4.
6
Adaptation to changes in higher-order stimulus statistics in the salamander retina.
PLoS One. 2014 Jan 21;9(1):e85841. doi: 10.1371/journal.pone.0085841. eCollection 2014.
7
Effects of persistent inward currents, accommodation, and adaptation on motor unit behavior: a simulation study.
J Neurophysiol. 2011 Sep;106(3):1467-79. doi: 10.1152/jn.00419.2011. Epub 2011 Jun 22.
8
Slow spike frequency adaptation in neurons of the rat subthalamic nucleus.
J Neurophysiol. 2009 Dec;102(6):3689-97. doi: 10.1152/jn.00759.2009. Epub 2009 Oct 21.
9
BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.
J Physiol. 2007 May 1;580(Pt.3):859-82. doi: 10.1113/jphysiol.2006.126367. Epub 2007 Feb 15.
10
Slow adaptation in spider mechanoreceptor neurons.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 May;191(5):403-11. doi: 10.1007/s00359-004-0597-1. Epub 2005 Mar 5.

本文引用的文献

1
The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ.
J Physiol. 1926 Apr 23;61(2):151-71. doi: 10.1113/jphysiol.1926.sp002281.
2
A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons.
J Gen Physiol. 1968 Jul;52(1):1-21. doi: 10.1085/jgp.52.1.1.
3
Voltage clamp studies of a transient outward membrane current in gastropod neural somata.
J Physiol. 1971 Feb;213(1):21-30. doi: 10.1113/jphysiol.1971.sp009365.
4
Inward and delayed outward membrane currents in isolated neural somata under voltage clamp.
J Physiol. 1971 Feb;213(1):1-19. doi: 10.1113/jphysiol.1971.sp009364.
5
Two fast transient current components during voltage clamp on snail neurons.
J Gen Physiol. 1971 Jul;58(1):36-53. doi: 10.1085/jgp.58.1.36.
6
Inhibition of impulse activity in a sensory neuron by an electrogenic pump.
J Gen Physiol. 1971 Feb;57(2):125-63. doi: 10.1085/jgp.57.2.125.
7
Post-stimulus hyperpolarization and slow potassium conductance increase in Aplysia giant neurone.
J Physiol. 1972 Jun;223(2):549-70. doi: 10.1113/jphysiol.1972.sp009862.
8
The control by internal calcium of membrane permeability to sodium and potassium.
J Physiol. 1971 May;214(3):481-507. doi: 10.1113/jphysiol.1971.sp009445.
10
Conductance changes, an electrogenic pump and the hyperpolarization of leech neurones following impulses.
J Physiol. 1973 Mar;229(3):635-55. doi: 10.1113/jphysiol.1973.sp010158.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验