Suppr超能文献

用于稳健三维主动形状模型搜索的离群值检测与处理

Outlier detection and handling for robust 3-D active shape models search.

作者信息

Lekadir Karim, Merrifield Robert, Yang Guang-Zhong

机构信息

Royal Society/Wolfson Foundation Medical Image Computing Laboratory, Department of Computing, Imperial College London, U.K.

出版信息

IEEE Trans Med Imaging. 2007 Feb;26(2):212-22. doi: 10.1109/TMI.2006.889726.

Abstract

This paper presents a new outlier handling method for volumetric segmentation with three-dimensional (3-D) active shape models. The method is based on a shape metric that is invariant to scaling, rotation and translation by using the ratio of interlandmark distances as a local shape dissimilarity measure. Tolerance intervals for the descriptors are calculated from the training samples and used as a statistical tolerance model to infer the validity of the feature points. A replacement point is then suggested for each outlier based on the tolerance model and the position of the valid points. A geometrically weighted fitness measure is introduced for feature point detection, which limits the presence of outliers and improves the convergence of the proposed segmentation framework. The algorithm is immune to the extremity of the outliers and can handle a highly significant presence of erroneous feature points. The practical value of the technique is validated with 3-D magnetic resonance (MR) segmentation tasks of the carotid artery and myocardial borders of the left ventricle.

摘要

本文提出了一种用于三维主动形状模型体积分割的新的异常值处理方法。该方法基于一种形状度量,通过使用地标间距离的比率作为局部形状差异度量,对缩放、旋转和平移具有不变性。从训练样本中计算描述符的公差区间,并将其用作统计公差模型来推断特征点的有效性。然后根据公差模型和有效点的位置为每个异常值建议一个替换点。引入了一种几何加权适应度度量用于特征点检测,这限制了异常值的存在并提高了所提出的分割框架的收敛性。该算法对异常值的极端情况具有免疫力,并且能够处理大量错误特征点的情况。通过对颈动脉和左心室心肌边界的三维磁共振(MR)分割任务验证了该技术的实用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验