Suppr超能文献

利用一种新颖的稳健主动形状模型方法对 CT 数据中的肺癌进行自动三维肺分割。

Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach.

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

IEEE Trans Med Imaging. 2012 Feb;31(2):449-60. doi: 10.1109/TMI.2011.2171357. Epub 2011 Oct 13.

Abstract

Segmentation of lungs with (large) lung cancer regions is a nontrivial problem. We present a new fully automated approach for segmentation of lungs with such high-density pathologies. Our method consists of two main processing steps. First, a novel robust active shape model (RASM) matching method is utilized to roughly segment the outline of the lungs. The initial position of the RASM is found by means of a rib cage detection method. Second, an optimal surface finding approach is utilized to further adapt the initial segmentation result to the lung. Left and right lungs are segmented individually. An evaluation on 30 data sets with 40 abnormal (lung cancer) and 20 normal left/right lungs resulted in an average Dice coefficient of 0.975±0.006 and a mean absolute surface distance error of 0.84±0.23 mm, respectively. Experiments on the same 30 data sets showed that our methods delivered statistically significant better segmentation results, compared to two commercially available lung segmentation approaches. In addition, our RASM approach is generally applicable and suitable for large shape models.

摘要

肺部及(大)肺癌区域的分割是一个具有挑战性的问题。我们提出了一种新的全自动方法,用于分割高密度病变的肺部。我们的方法由两个主要处理步骤组成。首先,利用一种新的鲁棒主动形状模型(RASM)匹配方法粗略地分割肺部轮廓。RASM 的初始位置是通过肋骨检测方法找到的。其次,利用最优曲面发现方法进一步将初始分割结果适配到肺部。左右肺分别进行分割。对 30 个数据集(40 个异常(肺癌)和 20 个正常的左右肺)的评估得到的平均 Dice 系数为 0.975±0.006,平均绝对表面距离误差为 0.84±0.23mm。在相同的 30 个数据集上的实验表明,与两种商业上可用的肺分割方法相比,我们的方法提供了统计学上更好的分割结果。此外,我们的 RASM 方法具有通用性,适用于大的形状模型。

相似文献

1
Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach.
IEEE Trans Med Imaging. 2012 Feb;31(2):449-60. doi: 10.1109/TMI.2011.2171357. Epub 2011 Oct 13.
2
A 4D statistical shape model for automated segmentation of lungs with large tumors.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):347-54. doi: 10.1007/978-3-642-33418-4_43.
3
Automated lung segmentation in digital chest tomosynthesis.
Med Phys. 2012 Feb;39(2):732-41. doi: 10.1118/1.3671939.
4
Automated model-based rib cage segmentation and labeling in CT images.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):195-202. doi: 10.1007/978-3-540-75759-7_24.
6
Segmentation of airways in lungs using projections in 3-D CT angiography images.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3162-5. doi: 10.1109/IEMBS.2010.5627401.
7
Automated segmentation of lungs with severe interstitial lung disease in CT.
Med Phys. 2009 Oct;36(10):4592-9. doi: 10.1118/1.3222872.
8
A novel lung nodules detection scheme based on vessel segmentation on CT images.
Biomed Mater Eng. 2014;24(6):3179-86. doi: 10.3233/BME-141139.
9
Lung segmentation from CT with severe pathologies using anatomical constraints.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):804-11. doi: 10.1007/978-3-319-10404-1_100.
10
Smoothing lung segmentation surfaces in three-dimensional X-ray CT images using anatomic guidance.
Acad Radiol. 2005 Dec;12(12):1502-11. doi: 10.1016/j.acra.2005.08.008.

引用本文的文献

1
Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches.
Bioengineering (Basel). 2024 Oct 16;11(10):1034. doi: 10.3390/bioengineering11101034.
2
Artificial intelligence tool for the study of COVID-19 microdroplet spread across the human diameter and airborne space.
PLoS One. 2023 Jul 19;18(7):e0269905. doi: 10.1371/journal.pone.0269905. eCollection 2023.
3
SIFT-GVF-based lung edge correction method for correcting the lung region in CT images.
PLoS One. 2023 Feb 28;18(2):e0282107. doi: 10.1371/journal.pone.0282107. eCollection 2023.
4
A Comprehensive Survey on the Progress, Process, and Challenges of Lung Cancer Detection and Classification.
J Healthc Eng. 2022 Dec 16;2022:5905230. doi: 10.1155/2022/5905230. eCollection 2022.
6
Male pelvic multi-organ segmentation using token-based transformer Vnet.
Phys Med Biol. 2022 Oct 14;67(20). doi: 10.1088/1361-6560/ac95f7.
7
Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder-Decoder Segmentation Networks.
Bioengineering (Basel). 2022 Jul 29;9(8):351. doi: 10.3390/bioengineering9080351.
8
MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from CT images.
Signal Process Image Commun. 2022 Oct;108:116835. doi: 10.1016/j.image.2022.116835. Epub 2022 Aug 2.
9
How AI Can Help in the Diagnostic Dilemma of Pulmonary Nodules.
Cancers (Basel). 2022 Apr 6;14(7):1840. doi: 10.3390/cancers14071840.
10
Water Cycle Bat Algorithm and Dictionary-Based Deformable Model for Lung Tumor Segmentation.
Int J Biomed Imaging. 2021 Nov 22;2021:3492099. doi: 10.1155/2021/3492099. eCollection 2021.

本文引用的文献

1
Shape "break-and-repair" strategy and its application to automated medical image segmentation.
IEEE Trans Vis Comput Graph. 2011 Jan;17(1):115-24. doi: 10.1109/TVCG.2010.56.
2
Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts.
Med Image Anal. 2010 Apr;14(2):172-84. doi: 10.1016/j.media.2009.11.003. Epub 2009 Nov 22.
3
Automated segmentation of lungs with severe interstitial lung disease in CT.
Med Phys. 2009 Oct;36(10):4592-9. doi: 10.1118/1.3222872.
5
Automatic segmentation of lung parenchyma in the presence of diseases based on curvature of ribs.
Acad Radiol. 2008 Sep;15(9):1173-80. doi: 10.1016/j.acra.2008.02.004.
6
Adaptive border marching algorithm: automatic lung segmentation on chest CT images.
Comput Med Imaging Graph. 2008 Sep;32(6):452-62. doi: 10.1016/j.compmedimag.2008.04.005. Epub 2008 Jun 2.
7
3D active shape models using gradient descent optimization of description length.
Inf Process Med Imaging. 2005;19:566-77. doi: 10.1007/11505730_47.
8
Outlier detection and handling for robust 3-D active shape models search.
IEEE Trans Med Imaging. 2007 Feb;26(2):212-22. doi: 10.1109/TMI.2006.889726.
9
Optimal surface segmentation in volumetric images--a graph-theoretic approach.
IEEE Trans Pattern Anal Mach Intell. 2006 Jan;28(1):119-34. doi: 10.1109/TPAMI.2006.19.
10
Toward automated segmentation of the pathological lung in CT.
IEEE Trans Med Imaging. 2005 Aug;24(8):1025-38. doi: 10.1109/TMI.2005.851757.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验