Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA.
IEEE Trans Med Imaging. 2012 Feb;31(2):449-60. doi: 10.1109/TMI.2011.2171357. Epub 2011 Oct 13.
Segmentation of lungs with (large) lung cancer regions is a nontrivial problem. We present a new fully automated approach for segmentation of lungs with such high-density pathologies. Our method consists of two main processing steps. First, a novel robust active shape model (RASM) matching method is utilized to roughly segment the outline of the lungs. The initial position of the RASM is found by means of a rib cage detection method. Second, an optimal surface finding approach is utilized to further adapt the initial segmentation result to the lung. Left and right lungs are segmented individually. An evaluation on 30 data sets with 40 abnormal (lung cancer) and 20 normal left/right lungs resulted in an average Dice coefficient of 0.975±0.006 and a mean absolute surface distance error of 0.84±0.23 mm, respectively. Experiments on the same 30 data sets showed that our methods delivered statistically significant better segmentation results, compared to two commercially available lung segmentation approaches. In addition, our RASM approach is generally applicable and suitable for large shape models.
肺部及(大)肺癌区域的分割是一个具有挑战性的问题。我们提出了一种新的全自动方法,用于分割高密度病变的肺部。我们的方法由两个主要处理步骤组成。首先,利用一种新的鲁棒主动形状模型(RASM)匹配方法粗略地分割肺部轮廓。RASM 的初始位置是通过肋骨检测方法找到的。其次,利用最优曲面发现方法进一步将初始分割结果适配到肺部。左右肺分别进行分割。对 30 个数据集(40 个异常(肺癌)和 20 个正常的左右肺)的评估得到的平均 Dice 系数为 0.975±0.006,平均绝对表面距离误差为 0.84±0.23mm。在相同的 30 个数据集上的实验表明,与两种商业上可用的肺分割方法相比,我们的方法提供了统计学上更好的分割结果。此外,我们的 RASM 方法具有通用性,适用于大的形状模型。