Suppr超能文献

7特斯拉下人类灰质中功能磁共振成像信号的时空点扩散函数

Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla.

作者信息

Shmuel Amir, Yacoub Essa, Chaimow Denis, Logothetis Nikos K, Ugurbil Kamil

机构信息

Center for MR Research, University of Minnesota Medical School, 2021 6th St. SE, Minneapolis, MN, USA.

出版信息

Neuroimage. 2007 Apr 1;35(2):539-52. doi: 10.1016/j.neuroimage.2006.12.030. Epub 2007 Jan 4.

Abstract

This study investigated the spatio-temporal properties of blood-oxygenation level-dependent (BOLD) functional MRI (fMRI) signals in gray matter, excluding the confounding, inaccurate contributions of large blood vessels. We quantified the spatial specificity of the BOLD response, and we investigated whether this specificity varies as a function of time from stimulus onset. fMRI was performed at 7 Tesla (T), where mapping signals of parenchymal origin are easily detected. Two abutting visual stimuli were adjusted to elicit responses centered on a flat gray matter region in V1. fMRI signals were sampled at high-resolution orthogonal to the retinotopic boundary between the representations of the stimuli. Signals from macro-vessels were masked out. Principal component analysis revealed that the first component in space accounted for 96.2+/-1.6% of the variance over time. The spatial profile of this time-invariant response was fitted with a model consisting of the convolution of a step function and a Gaussian point-spread-function (PSF). The mean full-width at half-maximal-height of the fitted PSF was 2.34+/-0.20 mm. Based on simulations of confounding effects, we estimate that BOLD PSF in human gray matter is smaller than 2 mm. A time-point to time-point analysis revealed that the PSF obtained during the 3rd (1.52 mm) and 4th (1.99 mm) seconds of stimulation were narrower than the mean PSF obtained from the 5th second on (2.42+/-0.15 mm). The position of the edge of the responding region was offset (1.72+/-0.07 mm) from the boundary of the stimulated region, indicating a spatial non-linearity. Simulations showed that the effective contrast between active and non-active columns is reduced 25-fold when imaged using a PSF whose width is equal to the cycle of the imaged columnar organization. Thus, the PSF of the hyper-oxygenated BOLD response in human gray matter is narrower than that reported at 1.5 T, where macro-vessels dominate the mapping signals. The initial phase of this response is more spatially specific than later phases. Data acquisition methods that suppress macro-vascular signals should increase the spatial specificity of BOLD fMRI. The choice of optimal stimulus duration represents a trade-off between the spatial specificity and the overhead associated with short stimulus duration.

摘要

本研究调查了灰质中血氧水平依赖(BOLD)功能磁共振成像(fMRI)信号的时空特性,排除了大血管产生的混淆性、不准确的信号贡献。我们量化了BOLD反应的空间特异性,并研究了这种特异性是否随刺激开始后的时间而变化。fMRI在7特斯拉(T)下进行,在此场强下,来自实质组织的信号很容易被检测到。调整两个相邻的视觉刺激,以引发以V1区平坦灰质区域为中心的反应。fMRI信号在与刺激表征之间的视网膜拓扑边界正交的高分辨率下进行采样。来自大血管的信号被屏蔽掉。主成分分析表明,空间中的第一个成分在时间上占方差的96.2±1.6%。这个随时间不变的反应的空间分布用一个由阶跃函数和高斯点扩散函数(PSF)卷积组成的模型进行拟合。拟合后的PSF的半高宽均值为2.34±0.20毫米。基于对混淆效应的模拟,我们估计人类灰质中的BOLD PSF小于2毫米。逐点分析表明,在刺激的第3秒(1.52毫米)和第4秒(1.99毫米)期间获得的PSF比从第5秒开始获得的平均PSF(2.42±0.15毫米)更窄。反应区域边缘的位置相对于刺激区域的边界偏移了(1.72±0.07毫米),表明存在空间非线性。模拟表明,当使用宽度等于成像柱状组织周期的PSF进行成像时,活跃柱和非活跃柱之间的有效对比度降低了25倍。因此,人类灰质中高氧BOLD反应的PSF比在1.5 T时报道的更窄,在1.5 T时大血管主导映射信号。该反应的初始阶段在空间上比后期阶段更具特异性。抑制大血管信号的数据采集方法应能提高BOLD fMRI的空间特异性。最佳刺激持续时间的选择代表了空间特异性与短刺激持续时间相关的额外成本之间的权衡。

相似文献

1
Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla.
Neuroimage. 2007 Apr 1;35(2):539-52. doi: 10.1016/j.neuroimage.2006.12.030. Epub 2007 Jan 4.
2
Linking brain vascular physiology to hemodynamic response in ultra-high field MRI.
Neuroimage. 2018 Mar;168:279-295. doi: 10.1016/j.neuroimage.2017.02.063. Epub 2017 Feb 22.
3
Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity.
Neuroimage. 2018 Jan 1;164:32-47. doi: 10.1016/j.neuroimage.2017.08.077. Epub 2017 Sep 5.
4
Size of the spatial correlation between ECoG and fMRI activity.
Neuroimage. 2021 Nov 15;242:118459. doi: 10.1016/j.neuroimage.2021.118459. Epub 2021 Aug 6.
5
Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex.
Prog Neurobiol. 2021 Dec;207:102187. doi: 10.1016/j.pneurobio.2021.102187. Epub 2021 Nov 16.
6
Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
Magn Reson Imaging. 2010 Oct;28(8):1135-42. doi: 10.1016/j.mri.2010.03.042. Epub 2010 Jun 25.
9
Linearity of blood-oxygenation-level dependent signal at microvasculature.
Neuroimage. 2009 Nov 1;48(2):313-8. doi: 10.1016/j.neuroimage.2009.06.071. Epub 2009 Jul 4.
10
Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
Neuroimage. 2018 Jan 1;164:67-99. doi: 10.1016/j.neuroimage.2017.04.011. Epub 2017 Apr 28.

引用本文的文献

1
Small vessel dysfunction at 7T MRI locally predicts white matter damage progression in CADASIL.
J Cereb Blood Flow Metab. 2025 Aug 20:271678X251369257. doi: 10.1177/0271678X251369257.
3
Contextual responses drive a unique laminar signature in human V1.
iScience. 2025 Jun 19;28(7):112967. doi: 10.1016/j.isci.2025.112967. eCollection 2025 Jul 18.
4
Functional magnetic resonance imaging and diffuse tensor imaging diagnostic values in central post-stroke pain.
Postep Psychiatr Neurol. 2025 Mar;34(1):44-53. doi: 10.5114/ppn.2025.149952. Epub 2025 Apr 30.
6
Closed-loop fMRI at the mesoscopic scale of columns and layers: Can we do it and why would we want to?
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230085. doi: 10.1098/rstb.2023.0085. Epub 2024 Oct 21.
7
Label-free functional imaging of vagus nerve stimulation-evoked potentials at the cortical surface.
NPJ Biosens. 2024;1(1):11. doi: 10.1038/s44328-024-00012-z. Epub 2024 Sep 10.
10
Non-Cartesian 3D-SPARKLING vs Cartesian 3D-EPI encoding schemes for functional Magnetic Resonance Imaging at 7 Tesla.
PLoS One. 2024 May 13;19(5):e0299925. doi: 10.1371/journal.pone.0299925. eCollection 2024.

本文引用的文献

1
Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation.
Neuroimage. 2006 May 1;30(4):1149-60. doi: 10.1016/j.neuroimage.2005.11.013. Epub 2006 Jan 18.
2
3
Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3822-7. doi: 10.1073/pnas.0407789102. Epub 2005 Feb 25.
4
Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans.
Neuroimage. 2005 Feb 1;24(3):738-50. doi: 10.1016/j.neuroimage.2004.09.002.
5
Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T.
Magn Reson Med. 2004 Oct;52(4):724-32. doi: 10.1002/mrm.20221.
6
Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response.
Neuroimage. 2004 Sep;23(1):233-41. doi: 10.1016/j.neuroimage.2004.05.012.
7
Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T.
Magn Reson Med. 2004 Mar;51(3):518-24. doi: 10.1002/mrm.10720.
8
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
10
Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields.
Magn Reson Med. 2003 Apr;49(4):655-64. doi: 10.1002/mrm.10433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验