Suppr超能文献

连接超对齐(CHA)对估计的脑网络属性的影响:从粗尺度到细尺度。

Effects of connectivity hyperalignment (CHA) on estimated brain network properties: from coarse-scale to fine-scale.

作者信息

Farahani Farzad V, Nebel Mary Beth, Wager Tor D, Lindquist Martin A

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.

Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA.

出版信息

bioRxiv. 2024 Aug 28:2024.08.27.609817. doi: 10.1101/2024.08.27.609817.

Abstract

Recent gains in functional magnetic resonance imaging (fMRI) studies have been driven by increasingly sophisticated statistical and computational techniques and the ability to capture brain data at finer spatial and temporal resolution. These advances allow researchers to develop population-level models of the functional brain representations underlying behavior, performance, clinical status, and prognosis. However, even following conventional preprocessing pipelines, considerable inter-individual disparities in functional localization persist, posing a hurdle to performing compelling population-level inference. Persistent misalignment in functional topography after registration and spatial normalization will reduce power in developing predictive models and biomarkers, reduce the specificity of estimated brain responses and patterns, and provide misleading results on local neural representations and individual differences. This study aims to determine how connectivity hyperalignment (CHA)-an analytic approach for handling functional misalignment-can change estimated functional brain network topologies at various spatial scales from the coarsest set of parcels down to the vertex-level scale. The findings highlight the role of CHA in improving inter-subject similarities, while retaining individual-specific information and idiosyncrasies at finer spatial granularities. This highlights the potential for fine-grained connectivity analysis using this approach to reveal previously unexplored facets of brain structure and function.

摘要

功能磁共振成像(fMRI)研究的最新进展得益于日益复杂的统计和计算技术,以及以更高的空间和时间分辨率获取大脑数据的能力。这些进展使研究人员能够建立行为、表现、临床状态和预后背后的功能性脑表征的群体水平模型。然而,即使遵循传统的预处理流程,功能定位方面的个体间差异仍然相当大,这给进行有说服力的群体水平推断带来了障碍。配准和空间归一化后功能地形图的持续错位将降低开发预测模型和生物标志物的效能,降低估计脑反应和模式的特异性,并在局部神经表征和个体差异方面提供误导性结果。本研究旨在确定连接超对齐(CHA)——一种处理功能错位的分析方法——如何在从最粗粒度的脑区到顶点级别的各种空间尺度上改变估计的功能性脑网络拓扑结构。研究结果突出了CHA在提高受试者间相似性方面的作用,同时在更精细的空间粒度上保留个体特定信息和特质。这凸显了使用这种方法进行细粒度连接分析以揭示大脑结构和功能先前未被探索方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f7/11383013/0e7f52417ebf/nihpp-2024.08.27.609817v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验