James Emmanuel R, van Zyl Willem H, Görgens Johann F
Department of Process Engineering, University of Stellenbosch, Private Bag X1, 7602, Stellenbosch, South Africa.
Appl Microbiol Biotechnol. 2007 May;75(2):279-88. doi: 10.1007/s00253-006-0812-9. Epub 2007 Feb 17.
The capacity of the filamentous fungi Aspergillus niger to produce and assemble complex immunogenic viral proteins into virus-like particles (VLPs) in batch culture was enhanced by optimizing the bioprocessing parameters, agitation intensity and dissolved oxygen (dO(2)) concentration. Response surface methodology (RSM) and a two-factor-two-level central composite rotatable design (CCRD) were employed to evaluate the interactive response pattern between parameters and their optimum combination. The recombinant hepatitis B surface antigen (HBsAg) was used as a model VLP system to determine the effect of these parameters on biomass yield, fungal morphology, HBsAg production and bioreactor kinetics. The response surface model predicted optimum cultivation conditions at an agitation of rate of 100 rpm and a dO(2) concentration of 25%, obtaining highest intracellular membrane-associated HBsAg levels of [see text]. HBsAg production levels were increased tenfold compared to yields obtained in shake flask cultivation. Although hepatitis B VLPs mostly accumulated intracellularly, optimal bioreactor conditions resulted in significant HBsAg release in culture supernatant. These results compare favourably with other recombinant VLP systems in batch culture, and therefore, indicate a substantial potential for further engineering of the A. niger production system for the high level of intracellular and extracellular VLP production.
通过优化生物加工参数、搅拌强度和溶解氧(dO₂)浓度,丝状真菌黑曲霉在分批培养中产生并将复杂的免疫原性病毒蛋白组装成病毒样颗粒(VLP)的能力得到了增强。采用响应面法(RSM)和二因素二水平中心复合旋转设计(CCRD)来评估参数之间的交互响应模式及其最佳组合。重组乙肝表面抗原(HBsAg)被用作模型VLP系统,以确定这些参数对生物量产量、真菌形态、HBsAg产量和生物反应器动力学的影响。响应面模型预测,在搅拌速率为100 rpm和dO₂浓度为25%的条件下培养最佳,可获得最高的细胞内膜相关HBsAg水平(见正文)。与摇瓶培养的产量相比,HBsAg产量提高了10倍。虽然乙肝VLP大多在细胞内积累,但最佳的生物反应器条件导致培养上清液中有大量的HBsAg释放。这些结果与分批培养中的其他重组VLP系统相比具有优势,因此表明黑曲霉生产系统在进一步工程化以实现高水平的细胞内和细胞外VLP生产方面具有巨大潜力。