Chen Shih-Jen, Kao Chun-Lan, Chang Yuh-Lih, Yen Chih-Ju, Shui Jia-Wei, Chien Chan-Shiu, Chen I-Lin, Tsai Tung-Hu, Ku Hung-Hai, Chiou Shih-Hwa
Department of Opthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taiwan.
Curr Neurovasc Res. 2007 Feb;4(1):19-29. doi: 10.2174/156720207779940707.
The hippocampus has long been associated with learning, memory, and modulation of emotional responses. Previous studies demonstrated that stress-induced loss of hippocampal neurons may contribute to the pathogenesis of depression. The recent observations supported that antidepressant drugs increase the production of serotoninergic neurotransmitter and they play a critical role in the initiation of neurogenesis in the hippocampus. In order to explore the possible new mechanism of the treatment of depression, we cultured neural stem cells (NSCs) derived from the hippocampus of adult rats as an in vitro model to evaluate the capabilities of neuroprotection and neural differentiation in NSCs by fluoxetine (FL) treatment. Our results showed that 20 microM FL treatment can significantly increase the proliferation rate of NSCs (p<0.05), and up-regulate the mRNA and protein expressions of Bcl-2 in Day-7 FL-treated NSCs (p<0.01). Using Bcl-2 gene silencing with small interfering RNA, our data verified that FL can prevent Fas ligand-induced caspase-dependent apoptosis in NSCs through the activation of Bcl-2. The in vitro observation and immunofluorescent study further demonstrated that FL treatment can stimulate the neurite development and serotoninergic differentiation of NSCs through the activation of Bcl-2. Using microdialysis with high performance liquid chromatography- electrochemical detection, the functional release of serotonin in the differentiating NSCs with FL treatment was increased and simultaneously regulated by the Bcl-2 expressions. In sum, the study results indicate that antidepressant administration can increase NSCs survival, promote the neurite development, and facilitate NSCs differentiating into the functional serotoninergic neurons via the modulation of Bcl-2 expression.
海马体长期以来一直与学习、记忆以及情绪反应的调节相关联。先前的研究表明,应激诱导的海马体神经元丧失可能导致抑郁症的发病机制。最近的观察结果支持抗抑郁药物会增加血清素能神经递质的产生,并且它们在海马体神经发生的起始过程中发挥关键作用。为了探索治疗抑郁症可能的新机制,我们培养了源自成年大鼠海马体的神经干细胞(NSCs)作为体外模型,以评估氟西汀(FL)处理对NSCs的神经保护和神经分化能力。我们的结果表明,20 microM的FL处理可显著提高NSCs的增殖率(p<0.05),并上调第7天FL处理的NSCs中Bcl-2的mRNA和蛋白表达(p<0.01)。通过小干扰RNA使Bcl-2基因沉默,我们的数据证实FL可通过激活Bcl-2来预防Fas配体诱导的NSCs中依赖半胱天冬酶的凋亡。体外观察和免疫荧光研究进一步表明,FL处理可通过激活Bcl-2刺激NSCs的神经突发育和血清素能分化。使用高效液相色谱 - 电化学检测的微透析技术,FL处理的分化NSCs中血清素的功能性释放增加,并且同时受Bcl-2表达的调节。总之,研究结果表明,抗抑郁药物给药可通过调节Bcl-2表达来增加NSCs的存活,促进神经突发育,并促进NSCs分化为功能性血清素能神经元。