Suppr超能文献

慢性脊髓损伤中的肌肉骨骼适应性:长期比目鱼肌电刺激训练的影响

Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.

作者信息

Shields Richard K, Dudley-Javoroski Shauna

机构信息

Graduate Program in Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, IA 52242-1190, USA.

出版信息

Neurorehabil Neural Repair. 2007 Mar-Apr;21(2):169-79. doi: 10.1177/1545968306293447.

Abstract

OBJECTIVE

The purpose of this study was to determine whether long-term electrical stimulation training of the paralyzed soleus could change this muscle's physiological properties (torque, fatigue index, potentiation index, torque-time integral) and increase tibia bone mineral density.

METHODS

Four men with chronic (>2 years) complete spinal cord injury (SCI; American Spinal Injury Association classification A) trained 1 soleus muscle using an isometric plantar flexion electrical stimulation protocol. The untrained limb served as a within-subject control. The protocol involved ~ 30 minutes of training each day, 5 days a week, for a period of 6 to 11 months. Mean compliance over 11 months of training was 91% for 3 subjects. A fourth subject achieved high compliance after only 5 months of training. Mean estimated compressive loads delivered to the tibia were approximately 110% of body weight. Over the 11 months of training, the muscle plantar flexion torque, fatigue index, potentiation index, and torque-time integral were evaluated periodically. Bone mineral density (dual-energy x-ray absorptiometry) was evaluated before and after the training program.

RESULTS

The trained limb fatigue index, potentiation index, and torque-time integral showed rapid and robust training effects (P<.05). Soleus electrical stimulation training yielded no changes to the proximal tibia bone mineral density, as measured by dual-energy x-ray absorptiometry. The subject with low compliance experienced fatigue index and torque-time integral improvements only when his compliance surpassed 80%. In contrast, his potentiation index showed adaptations even when compliance was low.

CONCLUSIONS

These findings highlight the persistent adaptive capabilities of chronically paralyzed muscle but suggest that preventing musculoskeletal adaptations after SCI may be more effective than reversing changes in the chronic condition.

摘要

目的

本研究旨在确定对瘫痪比目鱼肌进行长期电刺激训练是否会改变该肌肉的生理特性(扭矩、疲劳指数、增强指数、扭矩-时间积分)并增加胫骨骨矿物质密度。

方法

四名患有慢性(>2年)完全性脊髓损伤(SCI;美国脊髓损伤协会分级为A)的男性使用等长跖屈电刺激方案对一侧比目鱼肌进行训练。未训练的肢体作为受试者自身对照。该方案包括每天训练约30分钟,每周5天,持续6至11个月。3名受试者在11个月训练期间的平均依从率为91%。第四名受试者在仅训练5个月后就达到了高依从率。传递到胫骨的平均估计压缩负荷约为体重的110%。在11个月的训练期间,定期评估肌肉的跖屈扭矩、疲劳指数、增强指数和扭矩-时间积分。在训练计划前后评估骨矿物质密度(双能X线吸收法)。

结果

训练肢体的疲劳指数、增强指数和扭矩-时间积分显示出快速而显著的训练效果(P<0.05)。通过双能X线吸收法测量,比目鱼肌电刺激训练未使胫骨近端骨矿物质密度发生变化。依从性低的受试者仅在其依从率超过80%时,疲劳指数和扭矩-时间积分才有改善。相比之下,即使依从性低,其增强指数也显示出适应性变化。

结论

这些发现突出了慢性瘫痪肌肉持续的适应能力,但表明在脊髓损伤后预防肌肉骨骼适应性变化可能比逆转慢性状态下的变化更有效。

相似文献

1
Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
Neurorehabil Neural Repair. 2007 Mar-Apr;21(2):169-79. doi: 10.1177/1545968306293447.
2
Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.
3
Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
J Appl Physiol (1985). 2006 Aug;101(2):556-65. doi: 10.1152/japplphysiol.00099.2006. Epub 2006 Mar 30.
4
Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury.
Phys Ther. 2008 Mar;88(3):387-96. doi: 10.2522/ptj.20070224. Epub 2008 Jan 17.
5
Doublet electrical stimulation enhances torque production in people with spinal cord injury.
Neurorehabil Neural Repair. 2011 Jun;25(5):423-32. doi: 10.1177/1545968310390224. Epub 2011 Feb 8.
6
Electrically induced muscle contractions influence bone density decline after spinal cord injury.
Spine (Phila Pa 1976). 2006 Mar 1;31(5):548-53. doi: 10.1097/01.brs.0000201303.49308.a8.
8
Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.
J Musculoskelet Neuronal Interact. 2008 Jul-Sep;8(3):227-38.
9
Hybrid stimulation enhances torque as a function of muscle fusion in human paralyzed and non-paralyzed skeletal muscle.
J Spinal Cord Med. 2019 Sep;42(5):562-570. doi: 10.1080/10790268.2018.1485312. Epub 2018 Jun 20.
10
Feedback-controlled stimulation enhances human paralyzed muscle performance.
J Appl Physiol (1985). 2006 Nov;101(5):1312-9. doi: 10.1152/japplphysiol.00385.2006. Epub 2006 Jun 29.

引用本文的文献

1
Development of a Flexible Electrode for Electrical Stimulation of Rabbit Extraocular Muscle.
Korean J Ophthalmol. 2025 Aug;39(4):305-311. doi: 10.3341/kjo.2025.0067. Epub 2025 Jun 16.
3
Developing and Investigating a Nanovibration Intervention for the Prevention/Reversal of Bone Loss Following Spinal Cord Injury.
ACS Nano. 2024 Jul 9;18(27):17630-17641. doi: 10.1021/acsnano.4c02104. Epub 2024 Jun 26.
4
Low-frequency electrically induced exercise after spinal cord injury: Physiologic challenge to skeletal muscle and feasibility for long-term use.
J Spinal Cord Med. 2024 Nov;47(6):1026-1032. doi: 10.1080/10790268.2024.2338295. Epub 2024 Apr 15.
8
The Effects of Exercise and Activity-Based Physical Therapy on Bone after Spinal Cord Injury.
Int J Mol Sci. 2022 Jan 6;23(2):608. doi: 10.3390/ijms23020608.
10
Osteoporosis after spinal cord injury: aetiology, effects and therapeutic approaches.
J Musculoskelet Neuronal Interact. 2021 Mar 1;21(1):26-50.

本文引用的文献

1
The effects of fatigue on the torque-frequency curve of the human paralysed soleus muscle.
J Electromyogr Kinesiol. 1997 Mar;7(1):3-13. doi: 10.1016/s1050-6411(96)00015-6.
2
Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
J Appl Physiol (1985). 2006 Aug;101(2):556-65. doi: 10.1152/japplphysiol.00099.2006. Epub 2006 Mar 30.
3
Electrically induced muscle contractions influence bone density decline after spinal cord injury.
Spine (Phila Pa 1976). 2006 Mar 1;31(5):548-53. doi: 10.1097/01.brs.0000201303.49308.a8.
4
Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.
5
Adaptive response of human tendon to paralysis.
Muscle Nerve. 2006 Jan;33(1):85-92. doi: 10.1002/mus.20441.
6
Length-tension properties of ankle muscles in chronic human spinal cord injury.
J Biomech. 2005 Dec;38(12):2344-53. doi: 10.1016/j.jbiomech.2004.10.024. Epub 2004 Dec 15.
7
Bone mineral density after spinal cord injury: a reliable method for knee measurement.
Arch Phys Med Rehabil. 2005 Oct;86(10):1969-73. doi: 10.1016/j.apmr.2005.06.001.
8
Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women.
Osteoporos Int. 2005 Mar;16(3):263-72. doi: 10.1007/s00198-004-1665-7. Epub 2004 Aug 28.
9
Trabecular bone microarchitecture is deteriorated in men with spinal cord injury.
J Bone Miner Res. 2004 Jan;19(1):48-55. doi: 10.1359/JBMR.0301208.
10
Effect of load during electrical stimulation training in spinal cord injury.
Muscle Nerve. 2004 Jan;29(1):104-11. doi: 10.1002/mus.10522.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验