Suppr超能文献

反馈控制刺激可增强人类瘫痪肌肉的性能。

Feedback-controlled stimulation enhances human paralyzed muscle performance.

作者信息

Shields Richard K, Dudley-Javoroski Shauna, Cole Keith R

机构信息

Graduate Program in Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, IA 52242-1190, USA.

出版信息

J Appl Physiol (1985). 2006 Nov;101(5):1312-9. doi: 10.1152/japplphysiol.00385.2006. Epub 2006 Jun 29.

Abstract

Chronically paralyzed muscle requires extensive training before it can deliver a therapeutic dose of repetitive stress to the musculoskeletal system. Neuromuscular electrical stimulation, under feedback control, may subvert the effects of fatigue, yielding more rapid and extensive adaptations to training. The purposes of this investigation were to 1) compare the effectiveness of torque feedback-controlled (FDBCK) electrical stimulation with classic open-loop constant-frequency (CONST) stimulation, and 2) ascertain which of three stimulation strategies best maintains soleus torque during repetitive stimulation. When torque declined by 10%, the FDBCK protocol modulated the base stimulation frequency in three ways: by a fixed increase, by a paired pulse (doublet) at the beginning of the stimulation train, and by a fixed decrease. The stimulation strategy that most effectively restored torque continued for successive contractions. This process repeated each time torque declined by 10%. In fresh muscle, FDBCK stimulation offered minimal advantage in maintaining peak torque or mean torque over CONST stimulation. As long-duration fatigue developed in subsequent bouts, FDBCK stimulation became most effective ( approximately 40% higher final normalized torque than CONST). The high-frequency strategy was selected approximately 90% of the time, supporting that excitation-contraction coupling compromise and not neuromuscular transmission failure contributed to fatigue of paralyzed muscle. Ideal stimulation strategies may vary according to the site of fatigue; this stimulation approach offered the advantage of online modulation of stimulation strategies in response to fatigue conditions. Based on stress-adaptation principles, FDBCK-controlled stimulation may enhance training effects in chronically paralyzed muscle.

摘要

长期瘫痪的肌肉在能够向肌肉骨骼系统传递治疗剂量的重复性应力之前,需要进行大量训练。在反馈控制下的神经肌肉电刺激可能会抵消疲劳的影响,从而对训练产生更快、更广泛的适应性变化。本研究的目的是:1)比较扭矩反馈控制(FDBCK)电刺激与经典开环恒频(CONST)刺激的效果;2)确定三种刺激策略中哪一种在重复刺激期间能最佳维持比目鱼肌扭矩。当扭矩下降10%时,FDBCK方案通过三种方式调节基础刺激频率:固定增加、在刺激序列开始时采用成对脉冲(双脉冲)以及固定降低。最有效地恢复扭矩的刺激策略会持续用于后续收缩。每次扭矩下降10%时,这个过程都会重复。在新鲜肌肉中,与CONST刺激相比,FDBCK刺激在维持峰值扭矩或平均扭矩方面优势极小。随着后续训练中出现长时间疲劳,FDBCK刺激变得最为有效(最终归一化扭矩比CONST高约40%)。高频策略在大约90%的时间内被选用,这支持了兴奋 - 收缩偶联受损而非神经肌肉传递失败导致瘫痪肌肉疲劳的观点。理想的刺激策略可能因疲劳部位而异;这种刺激方法具有根据疲劳状况在线调节刺激策略的优势。基于应激 - 适应原理,FDBCK控制的刺激可能会增强长期瘫痪肌肉的训练效果。

相似文献

1
Feedback-controlled stimulation enhances human paralyzed muscle performance.
J Appl Physiol (1985). 2006 Nov;101(5):1312-9. doi: 10.1152/japplphysiol.00385.2006. Epub 2006 Jun 29.
3
Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
J Appl Physiol (1985). 2006 Aug;101(2):556-65. doi: 10.1152/japplphysiol.00099.2006. Epub 2006 Mar 30.
4
Doublet electrical stimulation enhances torque production in people with spinal cord injury.
Neurorehabil Neural Repair. 2011 Jun;25(5):423-32. doi: 10.1177/1545968310390224. Epub 2011 Feb 8.
5
Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
Neurorehabil Neural Repair. 2007 Mar-Apr;21(2):169-79. doi: 10.1177/1545968306293447.
6
Hybrid stimulation enhances torque as a function of muscle fusion in human paralyzed and non-paralyzed skeletal muscle.
J Spinal Cord Med. 2019 Sep;42(5):562-570. doi: 10.1080/10790268.2018.1485312. Epub 2018 Jun 20.
7
Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.
Clin Neurophysiol. 2013 Sep;124(9):1853-60. doi: 10.1016/j.clinph.2013.03.027. Epub 2013 May 11.
8
Within-train neuromuscular propagation varies with torque in paralyzed human muscle.
Muscle Nerve. 2002 Nov;26(5):673-80. doi: 10.1002/mus.10245.
9
Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.
10
Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle.
J Neurophysiol. 1995 Jun;73(6):2195-206. doi: 10.1152/jn.1995.73.6.2195.

引用本文的文献

1
Toward a wearable monitor of local muscle fatigue during electrical muscle stimulation using tissue Doppler imaging.
Wearable Technol. 2022 Jul 20;3:e16. doi: 10.1017/wtc.2022.10. eCollection 2022.
2
Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review.
PLoS One. 2016 Feb 9;11(2):e0149024. doi: 10.1371/journal.pone.0149024. eCollection 2016.
3
Doublet electrical stimulation enhances torque production in people with spinal cord injury.
Neurorehabil Neural Repair. 2011 Jun;25(5):423-32. doi: 10.1177/1545968310390224. Epub 2011 Feb 8.

本文引用的文献

1
The effects of fatigue on the torque-frequency curve of the human paralysed soleus muscle.
J Electromyogr Kinesiol. 1997 Mar;7(1):3-13. doi: 10.1016/s1050-6411(96)00015-6.
2
Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
J Appl Physiol (1985). 2006 Aug;101(2):556-65. doi: 10.1152/japplphysiol.00099.2006. Epub 2006 Mar 30.
3
Electrically induced muscle contractions influence bone density decline after spinal cord injury.
Spine (Phila Pa 1976). 2006 Mar 1;31(5):548-53. doi: 10.1097/01.brs.0000201303.49308.a8.
4
Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.
5
Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.
J Appl Physiol (1985). 2006 Mar;100(3):1027-36. doi: 10.1152/japplphysiol.00935.2005. Epub 2005 Nov 23.
7
Bone mineral density after spinal cord injury: a reliable method for knee measurement.
Arch Phys Med Rehabil. 2005 Oct;86(10):1969-73. doi: 10.1016/j.apmr.2005.06.001.
8
Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle.
Eur J Appl Physiol. 2005 Aug;94(5-6):659-69. doi: 10.1007/s00421-005-1356-x. Epub 2005 May 11.
9
10
Re-evaluation of muscle wisdom in the human adductor pollicis using physiological rates of stimulation.
J Physiol. 2003 Jun 15;549(Pt 3):865-75. doi: 10.1113/jphysiol.2003.038836. Epub 2003 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验