Suppr超能文献

急性脊髓损伤后的肌肉骨骼可塑性:长期神经肌肉电刺激训练的影响

Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.

作者信息

Shields Richard K, Dudley-Javoroski Shauna

机构信息

Graduate Program in Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, IA 52242-1190, USA.

出版信息

J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.

Abstract

Maintaining the physiologic integrity of paralyzed limbs may be critical for those with spinal cord injury (SCI) to be viable candidates for a future cure. No long-term intervention has been tested to attempt to prevent the severe musculoskeletal deterioration that occurs after SCI. The purposes of this study were to determine whether a long-term neuromuscular electrical stimulation training program can preserve the physiological properties of the plantar flexor muscles (peak torque, fatigue index, torque-time integral, and contractile speed) as well as influence distal tibia trabecular bone mineral density (BMD). Subjects began unilateral plantar flexion electrical stimulation training within 6 wk after SCI while the untrained leg served as a control. Mean compliance for the 2-yr training program was 83%. Mean estimated compressive loads delivered to the tibia were approximately 1-1.5 times body weight. The training protocol yielded significant trained versus untrained limb differences for torque (+24%), torque-time integral (+27%), fatigue index (+50%), torque rise time (+45%), and between-twitch fusion (+15%). These between-limb differences were even greater when measured at the end of a repetitive stimulation protocol (125 contractions). Peripheral quantitative computed tomography revealed 31% higher distal tibia trabecular BMD in trained limbs than in untrained limbs. The intervention used in this study was sufficient to limit many of the deleterious muscular and skeletal adaptations that normally occur after SCI. Importantly, this method of load delivery was feasible and may serve as the basis for an intervention to preserve the musculoskeletal properties of individuals with SCI.

摘要

对于脊髓损伤(SCI)患者而言,维持瘫痪肢体的生理完整性对于其成为未来治愈方案的可行候选者可能至关重要。目前尚未对任何长期干预措施进行测试,以试图预防SCI后发生的严重肌肉骨骼退化。本研究的目的是确定长期神经肌肉电刺激训练计划是否能够保留跖屈肌的生理特性(峰值扭矩、疲劳指数、扭矩-时间积分和收缩速度),以及是否会影响胫骨远端小梁骨密度(BMD)。受试者在SCI后6周内开始进行单侧跖屈电刺激训练,而未训练的腿作为对照。为期2年的训练计划的平均依从率为83%。传递至胫骨的平均估计压缩负荷约为体重的1 - 1.5倍。训练方案在训练肢体与未训练肢体之间产生了显著差异,包括扭矩(+24%)、扭矩-时间积分(+27%)、疲劳指数(+50%)、扭矩上升时间(+45%)和抽搐间融合(+15%)。在重复刺激方案(125次收缩)结束时进行测量时,这些肢体间差异更大。外周定量计算机断层扫描显示,训练肢体的胫骨远端小梁BMD比未训练肢体高31%。本研究中使用的干预措施足以限制SCI后通常发生的许多有害肌肉和骨骼适应性变化。重要的是,这种负荷传递方法是可行的,并且可能作为一种干预措施的基础,以保留SCI患者的肌肉骨骼特性。

相似文献

1
Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.
2
Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
Neurorehabil Neural Repair. 2007 Mar-Apr;21(2):169-79. doi: 10.1177/1545968306293447.
3
Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
J Appl Physiol (1985). 2006 Aug;101(2):556-65. doi: 10.1152/japplphysiol.00099.2006. Epub 2006 Mar 30.
4
High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury.
Osteoporos Int. 2012 Sep;23(9):2335-46. doi: 10.1007/s00198-011-1879-4. Epub 2011 Dec 21.
5
Electrically induced muscle contractions influence bone density decline after spinal cord injury.
Spine (Phila Pa 1976). 2006 Mar 1;31(5):548-53. doi: 10.1097/01.brs.0000201303.49308.a8.
6
Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury.
Phys Ther. 2008 Mar;88(3):387-96. doi: 10.2522/ptj.20070224. Epub 2008 Jan 17.
7
Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.
J Musculoskelet Neuronal Interact. 2008 Jul-Sep;8(3):227-38.
9
Hybrid stimulation enhances torque as a function of muscle fusion in human paralyzed and non-paralyzed skeletal muscle.
J Spinal Cord Med. 2019 Sep;42(5):562-570. doi: 10.1080/10790268.2018.1485312. Epub 2018 Jun 20.

引用本文的文献

1
Development of a Flexible Electrode for Electrical Stimulation of Rabbit Extraocular Muscle.
Korean J Ophthalmol. 2025 Aug;39(4):305-311. doi: 10.3341/kjo.2025.0067. Epub 2025 Jun 16.
5
Low-frequency electrically induced exercise after spinal cord injury: Physiologic challenge to skeletal muscle and feasibility for long-term use.
J Spinal Cord Med. 2024 Nov;47(6):1026-1032. doi: 10.1080/10790268.2024.2338295. Epub 2024 Apr 15.
6
Clinical applications of electrical stimulation for peripheral nerve injury: a systematic review.
Front Neurosci. 2023 Aug 3;17:1162851. doi: 10.3389/fnins.2023.1162851. eCollection 2023.
8
Effects of Muscles on Bone Metabolism-with a Focus on Myokines.
Ann Geriatr Med Res. 2022 Jun;26(2):63-71. doi: 10.4235/agmr.22.0054. Epub 2022 Jun 20.

本文引用的文献

1
The effects of fatigue on the torque-frequency curve of the human paralysed soleus muscle.
J Electromyogr Kinesiol. 1997 Mar;7(1):3-13. doi: 10.1016/s1050-6411(96)00015-6.
2
Electrically induced muscle contractions influence bone density decline after spinal cord injury.
Spine (Phila Pa 1976). 2006 Mar 1;31(5):548-53. doi: 10.1097/01.brs.0000201303.49308.a8.
3
Adaptive response of human tendon to paralysis.
Muscle Nerve. 2006 Jan;33(1):85-92. doi: 10.1002/mus.20441.
4
Length-tension properties of ankle muscles in chronic human spinal cord injury.
J Biomech. 2005 Dec;38(12):2344-53. doi: 10.1016/j.jbiomech.2004.10.024. Epub 2004 Dec 15.
5
Bone loss in spinal cord-injured patients: from physiopathology to therapy.
Spinal Cord. 2006 Apr;44(4):203-10. doi: 10.1038/sj.sc.3101832.
6
In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men.
J Appl Physiol (1985). 2005 Sep;99(3):1050-5. doi: 10.1152/japplphysiol.01186.2004. Epub 2005 May 19.
8
Risk factors for osteoporosis at the knee in the spinal cord injury population.
J Spinal Cord Med. 2004;27(3):202-6. doi: 10.1080/10790268.2004.11753748.
9
Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women.
Osteoporos Int. 2005 Mar;16(3):263-72. doi: 10.1007/s00198-004-1665-7. Epub 2004 Aug 28.
10
Variable-frequency-train stimulation of skeletal muscle after spinal cord injury.
J Rehabil Res Dev. 2004 Jan-Feb;41(1):33-40. doi: 10.1682/jrrd.2004.01.0033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验