Suppr超能文献

麻痹比目鱼肌疲劳后增强:长期电刺激训练适应性的证据。

Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

作者信息

Shields Richard K, Dudley-Javoroski Shauna, Littmann Andrew E

机构信息

Graduate Program in Physical Therapy and Rehabilitation Science, The Univ. of Iowa, 1-252 Medical Education Bldg., Iowa City, IA 52242-1190, USA.

出版信息

J Appl Physiol (1985). 2006 Aug;101(2):556-65. doi: 10.1152/japplphysiol.00099.2006. Epub 2006 Mar 30.

Abstract

Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.

摘要

了解瘫痪肌肉的扭矩输出行为对于功能性神经肌肉电刺激系统的应用具有重要意义。疲劳后增强是指在疲劳方案后的重复激活过程中,肌肉峰值扭矩的增加。本研究的目的是:1)量化急性和慢性瘫痪比目鱼肌的疲劳后增强;2)确定长期比目鱼肌电刺激训练对近期瘫痪比目鱼肌增强特性的影响。五名慢性瘫痪(>2年)受试者在诱导低频疲劳的比目鱼肌重复激活方案中表现出显著的疲劳后增强。十名急性瘫痪(<6个月)受试者在重复刺激后未表现出扭矩增强。其中七名急性受试者对一侧肢体进行了为期2年的家庭式比目鱼肌等长电刺激训练(依从性=83%;8300次收缩/周)。通过早期实施电刺激训练,训练后的比目鱼肌增强特性得以保持,如同急性损伤后的状态。相比之下,未训练的肢体在脊髓损伤(SCI)后2年表现出明显的疲劳后增强。一名纵向随访的急性SCI受试者所表现出的增强特性与训练受试者未训练的肢体非常相似。本研究结果支持疲劳后增强是快速疲劳肌肉的一种特性,并且可以通过及时的神经肌肉电刺激训练来预防。增强是为SCI患者设计功能性电刺激控制系统时的一个重要考虑因素。

相似文献

1
Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
J Appl Physiol (1985). 2006 Aug;101(2):556-65. doi: 10.1152/japplphysiol.00099.2006. Epub 2006 Mar 30.
2
Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
Neurorehabil Neural Repair. 2007 Mar-Apr;21(2):169-79. doi: 10.1177/1545968306293447.
3
Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.
4
Doublet electrical stimulation enhances torque production in people with spinal cord injury.
Neurorehabil Neural Repair. 2011 Jun;25(5):423-32. doi: 10.1177/1545968310390224. Epub 2011 Feb 8.
5
Feedback-controlled stimulation enhances human paralyzed muscle performance.
J Appl Physiol (1985). 2006 Nov;101(5):1312-9. doi: 10.1152/japplphysiol.00385.2006. Epub 2006 Jun 29.
6
Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.
Clin Neurophysiol. 2013 Sep;124(9):1853-60. doi: 10.1016/j.clinph.2013.03.027. Epub 2013 May 11.
7
Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle.
J Neurophysiol. 1995 Jun;73(6):2195-206. doi: 10.1152/jn.1995.73.6.2195.
8
Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing.
J Appl Physiol (1985). 2008 Jun;104(6):1574-82. doi: 10.1152/japplphysiol.00892.2007. Epub 2008 Apr 24.
10
Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans.
J Appl Physiol (1985). 1997 May;82(5):1499-507. doi: 10.1152/jappl.1997.82.5.1499.

引用本文的文献

1
Low-frequency electrically induced exercise after spinal cord injury: Physiologic challenge to skeletal muscle and feasibility for long-term use.
J Spinal Cord Med. 2024 Nov;47(6):1026-1032. doi: 10.1080/10790268.2024.2338295. Epub 2024 Apr 15.
2
RNA-seq data of soleus muscle tissue after spinal cord injury under conditions of inactivity and applied exercise.
Data Brief. 2019 Dec 31;28:105056. doi: 10.1016/j.dib.2019.105056. eCollection 2020 Feb.
3
Hybrid stimulation enhances torque as a function of muscle fusion in human paralyzed and non-paralyzed skeletal muscle.
J Spinal Cord Med. 2019 Sep;42(5):562-570. doi: 10.1080/10790268.2018.1485312. Epub 2018 Jun 20.
4
Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review.
PLoS One. 2016 Feb 9;11(2):e0149024. doi: 10.1371/journal.pone.0149024. eCollection 2016.
5
A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury.
PLoS One. 2014 Dec 22;9(12):e115791. doi: 10.1371/journal.pone.0115791. eCollection 2014.
6
Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury.
Physiol Rep. 2014 Feb 25;2(2):e00248. doi: 10.1002/phy2.248. eCollection 2014 Feb 1.
7
Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.
Clin Neurophysiol. 2013 Sep;124(9):1853-60. doi: 10.1016/j.clinph.2013.03.027. Epub 2013 May 11.
8
Fatigue and non-fatigue mathematical muscle models during functional electrical stimulation of paralyzed muscle.
Biomed Signal Process Control. 2010 Apr;5(2):87-93. doi: 10.1016/j.bspc.2009.12.001.
10
High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury.
Osteoporos Int. 2012 Sep;23(9):2335-46. doi: 10.1007/s00198-011-1879-4. Epub 2011 Dec 21.

本文引用的文献

1
The effects of fatigue on the torque-frequency curve of the human paralysed soleus muscle.
J Electromyogr Kinesiol. 1997 Mar;7(1):3-13. doi: 10.1016/s1050-6411(96)00015-6.
2
Electrically induced muscle contractions influence bone density decline after spinal cord injury.
Spine (Phila Pa 1976). 2006 Mar 1;31(5):548-53. doi: 10.1097/01.brs.0000201303.49308.a8.
3
Sarcoplasmic reticulum: the dynamic calcium governor of muscle.
Muscle Nerve. 2006 Jun;33(6):715-31. doi: 10.1002/mus.20512.
4
Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
J Neurophysiol. 2006 Apr;95(4):2380-90. doi: 10.1152/jn.01181.2005. Epub 2006 Jan 11.
5
Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.
J Appl Physiol (1985). 2006 Mar;100(3):1027-36. doi: 10.1152/japplphysiol.00935.2005. Epub 2005 Nov 23.
6
Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction.
Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17519-24. doi: 10.1073/pnas.0506846102. Epub 2005 Nov 18.
7
Tail muscles become slow but fatigable in chronic sacral spinal rats with spasticity.
J Neurophysiol. 2006 Feb;95(2):1124-33. doi: 10.1152/jn.00456.2005. Epub 2005 Nov 9.
8
Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles.
FEBS J. 2005 Nov;272(22):5771-85. doi: 10.1111/j.1742-4658.2005.04965.x.
9
Femoral loads during passive, active, and active-resistive stance after spinal cord injury: a mathematical model.
Clin Biomech (Bristol). 2004 Mar;19(3):313-21. doi: 10.1016/j.clinbiomech.2003.12.005.
10
Limiting mechanisms of force production after repetitive dynamic contractions in human triceps surae.
J Appl Physiol (1985). 2004 Apr;96(4):1516-21; discussion. doi: 10.1152/japplphysiol.01049.2003. Epub 2003 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验