Ramesh V M, Gibasiewicz Krzysztof, Lin Su, Bingham Scott E, Webber Andrew N
School of Life Sciences, Arizona State University, Tempe, PO BOX 874501, AZ 85287-4501, USA.
Biochim Biophys Acta. 2007 Feb;1767(2):151-60. doi: 10.1016/j.bbabio.2006.12.013. Epub 2007 Jan 19.
The recent crystal structure of photosystem I (PSI) from Thermosynechococcus elongatus shows two nearly symmetric branches of electron transfer cofactors including the primary electron donor, P(700), and a sequence of electron acceptors, A, A(0) and A(1), bound to the PsaA and PsaB heterodimer. The central magnesium atoms of each of the putative primary electron acceptor chlorophylls, A(0), are unusually coordinated by the sulfur atom of methionine 688 of PsaA and 668 of PsaB, respectively. We [Ramesh et al. (2004a) Biochemistry 43:1369-1375] have shown that the replacement of either methionine with histidine in the PSI of the unicellular green alga Chlamydomonas reinhardtii resulted in accumulation of A(0)(-) (in 300-ps time scale), suggesting that both the PsaA and PsaB branches are active. This is in contrast to cyanobacterial PSI where studies with methionine-to-leucine mutants show that electron transfer occurs predominantly along the PsaA branch. In this contribution we report that the change of methionine to either leucine or serine leads to a similar accumulation of A(0)(-) on both the PsaA and the PsaB branch of PSI from C. reinhardtii, as we reported earlier for histidine mutants. More importantly, we further demonstrate that for all the mutants under study, accumulation of A(0)(-) is transient, and that reoxidation of A(0)(-) occurs within 1-2 ns, two orders of magnitude slower than in wild type PSI, most likely via slow electron transfer to A(1). This illustrates an indispensable role of methionine as an axial ligand to the primary acceptor A(0) in optimizing the rate of charge stabilization in PSI. A simple energetic model for this reaction is proposed. Our findings support the model of equivalent electron transfer along both cofactor branches in Photosystem I.
嗜热栖热放线菌光系统I(PSI)最近的晶体结构显示,电子传递辅因子有两个近乎对称的分支,包括初级电子供体P(700)以及一系列与PsaA和PsaB异二聚体结合的电子受体A、A(0)和A(1)。每个假定的初级电子受体叶绿素A(0)的中心镁原子分别由PsaA的甲硫氨酸688和PsaB的甲硫氨酸668的硫原子异常配位。我们[拉梅什等人(2004年a)《生物化学》43:1369 - 1375]已经表明,在单细胞绿藻莱茵衣藻的PSI中,将任何一个甲硫氨酸替换为组氨酸都会导致A(0)(-)的积累(在300皮秒时间尺度上),这表明PsaA和PsaB分支都是活跃的。这与蓝细菌PSI形成对比,在蓝细菌PSI中,对甲硫氨酸到亮氨酸突变体的研究表明电子传递主要沿着PsaA分支发生。在本论文中,我们报告称,将甲硫氨酸变为亮氨酸或丝氨酸会导致莱茵衣藻PSI的PsaA和PsaB分支上类似的A(0)(-)积累,正如我们之前对组氨酸突变体所报道的那样。更重要的是,我们进一步证明,对于所有研究的突变体,A(0)(-)的积累是短暂的,并且A(0)(-)的再氧化在1 - 2纳秒内发生,比野生型PSI慢两个数量级,最有可能是通过向A(1)的缓慢电子传递。这说明了甲硫氨酸作为初级受体A(0)的轴向配体在优化PSI中电荷稳定速率方面的不可或缺的作用。为此反应提出了一个简单的能量模型。我们的研究结果支持了光系统I中沿两个辅因子分支进行等效电子传递的模型。