Suppr超能文献

蓝细菌光系统I中的不对称电子转移:初级电子受体A0附近突变体的电荷分离和二次电子转移动力学

Asymmetric electron transfer in cyanobacterial Photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0.

作者信息

Dashdorj Naranbaatar, Xu Wu, Cohen Rachel O, Golbeck John H, Savikhin Sergei

机构信息

Department of Physics, Purdue University, West Lafayette, Indiana.

出版信息

Biophys J. 2005 Feb;88(2):1238-49. doi: 10.1529/biophysj.104.050963. Epub 2004 Nov 12.

Abstract

Point mutations were introduced near the primary electron acceptor sites assigned to A0 in both the PsaA and PsaB branches of Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. The residues Met688PsaA and Met668PsaB, which provide the axial ligands to the Mg2+ of the eC-A3 and eC-B3 chlorophylls, were changed to leucine and asparagine (chlorophyll notation follows Jordan et al., 2001). The removal of the ligand is expected to alter the midpoint potential of the A0/A0- redox pair and result in a change in the intrinsic charge separation rate and secondary electron transfer kinetics from A0- to A1. The dynamics of primary charge separation and secondary electron transfer were studied at 690 nm and 390 nm in these mutants by ultrafast optical pump-probe spectroscopy. The data reveal that mutations in the PsaB branch do not alter electron transfer dynamics, whereas mutations in the PsaA branch have a distinct effect on electron transfer, slowing down both the primary charge separation and the secondary electron transfer step (the latter by a factor of 3-10). These results suggest that electron transfer in cyanobacterial Photosystem I is asymmetric and occurs primarily along the PsaA branch of cofactors.

摘要

在集胞藻PCC 6803的光系统I的PsaA和PsaB分支中,在指定为A0的初级电子受体位点附近引入了点突变。为eC-A3和eC-B3叶绿素的Mg2+提供轴向配体的Met688PsaA和Met668PsaB残基被分别替换为亮氨酸和天冬酰胺(叶绿素的命名遵循Jordan等人,2001年)。预期配体的去除会改变A0/A0-氧化还原对的中点电位,并导致本征电荷分离速率以及从A0-到A1的二次电子转移动力学发生变化。通过超快光泵浦-探测光谱,在690 nm和390 nm波长下研究了这些突变体中的初级电荷分离和二次电子转移动力学。数据显示,PsaB分支中的突变不会改变电子转移动力学,而PsaA分支中的突变对电子转移有明显影响,减缓了初级电荷分离和二次电子转移步骤(后者减缓了3至10倍)。这些结果表明,蓝藻光系统I中的电子转移是不对称的,主要沿着辅因子的PsaA分支发生。

相似文献

4
Replacement of the methionine axial ligand to the primary electron acceptor A0 slows the A0- reoxidation dynamics in photosystem I.
Biochim Biophys Acta. 2007 Feb;1767(2):151-60. doi: 10.1016/j.bbabio.2006.12.013. Epub 2007 Jan 19.
10
Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the Q band.
Biochim Biophys Acta Bioenerg. 2017 Nov;1858(11):895-905. doi: 10.1016/j.bbabio.2017.08.008. Epub 2017 Aug 18.

引用本文的文献

4
Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations.
Chem Sci. 2023 Feb 6;14(12):3117-3131. doi: 10.1039/d2sc06160k. eCollection 2023 Mar 22.
5
Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria.
Nat Commun. 2022 Oct 3;13(1):5824. doi: 10.1038/s41467-022-33505-4.
6
Current state of the primary charge separation mechanism in photosystem I of cyanobacteria.
Biophys Rev. 2022 Aug 15;14(4):805-820. doi: 10.1007/s12551-022-00983-1. eCollection 2022 Aug.
7
Competition between intra-protein charge recombination and electron transfer outside photosystem I complexes used for photovoltaic applications.
Photochem Photobiol Sci. 2022 Mar;21(3):319-336. doi: 10.1007/s43630-022-00170-x. Epub 2022 Feb 4.
9
Shedding Light on Primary Donors in Photosynthetic Reaction Centers.
Front Microbiol. 2021 Oct 1;12:735666. doi: 10.3389/fmicb.2021.735666. eCollection 2021.

本文引用的文献

3
Kinetic and Energetic Model for the Primary Processes in Photosystem II.
Biophys J. 1988 Sep;54(3):397-405. doi: 10.1016/S0006-3495(88)82973-4.
7
Mechanism for electron transfer within and between proteins.
Curr Opin Chem Biol. 2003 Oct;7(5):551-6. doi: 10.1016/j.cbpa.2003.08.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验