Frölich Cordula, Ober Dietrich, Hartmann Thomas
Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany.
Phytochemistry. 2007 Apr;68(7):1026-37. doi: 10.1016/j.phytochem.2007.01.002. Epub 2007 Feb 22.
Three species of the Boraginaceae were studied: greenhouse-grown plants of Heliotropium indicum and Agrobacterium rhizogenes transformed roots cultures (hairy roots) of Cynoglossum officinale and Symphytum officinale. The species-specific pyrrolizidine alkaloid (PA) profiles of the three systems were established by GC-MS. All PAs are genuinely present as N-oxides. In H. indicum the tissue-specific PA distribution revealed the presence of PAs in all tissues with the highest levels in the inflorescences which in a flowering plant may account for more than 70% of total plant alkaloid. The sites of PA biosynthesis vary among species. In H. indicum PAs are synthesized in the shoot but not roots whereas they are only made in shoots for C. officinale and in roots of S. officinale. Classical tracer studies with radioactively labelled precursor amines (e.g., putrescine, spermidine and homospermidine) and various necine bases (trachelanthamidine, supinidine, retronecine, heliotridine) and potential ester alkaloid intermediates (e.g., trachelanthamine, supinine) were performed to evaluate the biosynthetic sequences. It was relevant to perform these comparative studies since the key enzyme of the core pathway, homospermidine synthase, evolved independently in the Boraginaceae and, for instance, in the Asteraceae [Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16, 2772-2784.]. These studies showed that the core pathway for the formation of trachelanthamidine from putrescine and spermidine via homospermidine is common to the pathway in Senecio ssp. (Asteraceae). In both pathways homospermidine is further processed by a beta-hydroxyethylhydrazine sensitive diamine oxidase. Further steps of PA biosynthesis starting with trachelanthamidine as common precursor occur in two successive stages. Firstly, the necine bases are structurally modified and either before or after this modification are converted into their O(9)-esters by esterification with one of the stereoisomers of 2,3-dihydroxy-2-isopropylbutyric acid, the unique necic acid of PAs of the lycopsamine type. Secondly, the necine O(9)-esters may be further diversified by O(7)- and/or O(3')-acylation.
温室种植的天芥菜以及洋蓟和药用聚合草经发根农杆菌转化的根培养物(毛状根)。通过气相色谱 - 质谱联用(GC - MS)建立了这三个系统的物种特异性吡咯里西啶生物碱(PA)谱。所有的PA均以N - 氧化物的形式真实存在。在天芥菜中,组织特异性的PA分布显示所有组织中都存在PA,其中花序中的含量最高,在开花植物中,花序中的PA含量可能占植物总生物碱的70%以上。PA生物合成的位点因物种而异。在天芥菜中,PA在地上部分合成而不在根部合成,而在洋蓟中仅在地上部分合成,在药用聚合草中则在根部合成。使用放射性标记的前体胺(如腐胺、亚精胺和高亚精胺)以及各种裂碱(千里光裂碱、异裂碱、倒千里光裂碱、天芥菜碱)和潜在的酯生物碱中间体(如千里光胺、异千里光胺)进行了经典的示踪研究,以评估生物合成序列。进行这些比较研究是有意义的,因为核心途径的关键酶高亚精胺合酶在紫草科以及例如菊科中是独立进化的[Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. 吡咯里西啶生物碱介导的防御系统在不同被子植物谱系中的重复进化。植物细胞16, 2772 - 2784。]。这些研究表明,从腐胺和亚精胺经高亚精胺形成千里光裂碱的核心途径与千里光属植物(菊科)中的途径相同。在这两个途径中,高亚精胺都由一种对β - 羟乙基肼敏感的二胺氧化酶进一步加工。以千里光裂碱作为共同前体开始的PA生物合成的进一步步骤分两个连续阶段进行。首先,裂碱在结构上发生修饰,并且在这种修饰之前或之后通过与2,3 - 二羟基 - 2 - 异丙基丁酸的一种立体异构体酯化而转化为它们的O(9) - 酯,2,3 - 二羟基 - 2 - 异丙基丁酸是石蒜胺型PA的独特裂酸。其次,裂碱O(9) - 酯可通过O(7) - 和/或O(3') - 酰化进一步多样化。