Suppr超能文献

支撑脂质双分子层中三维结构的形成。

Formation of three-dimensional structures in supported lipid bilayers.

作者信息

Cambrea Lee R, Hovis Jennifer S

机构信息

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Biophys J. 2007 May 15;92(10):3587-94. doi: 10.1529/biophysj.106.101139. Epub 2007 Feb 26.

Abstract

The creation of three-dimensional structures in supported lipid bilayers has been examined. In bilayers, shape transformations can be triggered by adjusting a variety of parameters. Here, it is shown that bilayers composed of phosphatidylcholine and phosphatidic acid can be induced to reversibly form cap structures when exposed to an asymmetry in ionic strength. The structures that form depend on the asymmetry in the ionic strength and the amount of anionic lipid. Other factors that may be of importance in the creation of the structures, expansion forces, osmotic forces, and the bilayer-support interaction are discussed. The cap structures have the potential to be of considerable utility in examining the effect that curvature has on membrane processes.

摘要

已对支撑脂质双分子层中三维结构的形成进行了研究。在双分子层中,通过调整各种参数可以触发形状转变。在此表明,由磷脂酰胆碱和磷脂酸组成的双分子层在暴露于离子强度不对称时可被诱导可逆地形成帽状结构。形成的结构取决于离子强度的不对称性和阴离子脂质的量。还讨论了在结构形成中可能重要的其他因素,如膨胀力、渗透力和双分子层与支撑物的相互作用。帽状结构在研究曲率对膜过程的影响方面具有相当大的实用潜力。

相似文献

1
Formation of three-dimensional structures in supported lipid bilayers.
Biophys J. 2007 May 15;92(10):3587-94. doi: 10.1529/biophysj.106.101139. Epub 2007 Feb 26.
2
Effect of surface treatment on diffusion and domain formation in supported lipid bilayers.
Biophys J. 2007 Apr 1;92(7):2445-50. doi: 10.1529/biophysj.106.099721. Epub 2007 Jan 11.
3
Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers.
Phys Rev Lett. 2005 Jan 21;94(2):025701. doi: 10.1103/PhysRevLett.94.025701. Epub 2005 Jan 20.
4
Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties.
Arch Biochem Biophys. 2005 Jun 1;438(1):103-10. doi: 10.1016/j.abb.2005.04.006. Epub 2005 Apr 26.
5
Bending rigidity of mixed phospholipid bilayers and the equilibrium radius of corresponding vesicles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011903. doi: 10.1103/PhysRevE.76.011903. Epub 2007 Jul 11.
6
Membrane lipid polymorphism: relationship to bilayer properties and protein function.
Methods Mol Biol. 2007;400:15-26. doi: 10.1007/978-1-59745-519-0_2.
7
Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.
Biophys J. 2007 Mar 15;92(6):1988-99. doi: 10.1529/biophysj.106.093831. Epub 2006 Dec 22.
8
Coexistence of a two-states organization for a cell-penetrating peptide in lipid bilayer.
Biophys J. 2005 Dec;89(6):4300-9. doi: 10.1529/biophysj.105.061697. Epub 2005 Sep 30.
9
Fluorescence probe partitioning between Lo/Ld phases in lipid membranes.
Biochim Biophys Acta. 2007 Sep;1768(9):2182-94. doi: 10.1016/j.bbamem.2007.05.012. Epub 2007 May 21.
10
Phospholipid vesicle fusion on micropatterned polymeric bilayer substrates.
Biophys J. 2006 Sep 1;91(5):1757-66. doi: 10.1529/biophysj.105.080507. Epub 2006 Jun 9.

引用本文的文献

1
Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk.
FEBS J. 2024 Apr;291(7):1299-1352. doi: 10.1111/febs.16665. Epub 2022 Nov 7.
2
A simple supported tubulated bilayer system for evaluating protein-mediated membrane remodeling.
Chem Phys Lipids. 2018 Sep;215:18-28. doi: 10.1016/j.chemphyslip.2018.06.002. Epub 2018 Jul 22.
6
Examining the contributions of lipid shape and headgroup charge on bilayer behavior.
Biophys J. 2008 Sep 15;95(6):2636-46. doi: 10.1529/biophysj.107.128074. Epub 2008 May 30.
7
AFM study on the electric-field effects on supported bilayer lipid membranes.
Biophys J. 2008 Jun;94(12):4711-7. doi: 10.1529/biophysj.107.122887. Epub 2008 Mar 7.
8
Effect of ions on the organization of phosphatidylcholine/phosphatidic acid bilayers.
Biophys J. 2007 Sep 1;93(5):1630-8. doi: 10.1529/biophysj.107.104224. Epub 2007 May 4.

本文引用的文献

1
Formation of solid-supported lipid bilayers: an integrated view.
Langmuir. 2006 Apr 11;22(8):3497-505. doi: 10.1021/la052687c.
2
How proteins produce cellular membrane curvature.
Nat Rev Mol Cell Biol. 2006 Jan;7(1):9-19. doi: 10.1038/nrm1784.
3
Effect of salt concentration on membrane lysis pressure.
Biochim Biophys Acta. 2005 Nov 30;1717(2):104-8. doi: 10.1016/j.bbamem.2005.10.002. Epub 2005 Oct 25.
4
Budding and domain shape transformations in mixed lipid films and bilayer membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011903. doi: 10.1103/PhysRevE.72.011903. Epub 2005 Jul 5.
5
Spontaneous curvature of phosphatidic acid and lysophosphatidic acid.
Biochemistry. 2005 Feb 15;44(6):2097-102. doi: 10.1021/bi0478502.
6
Structural transitions in short-chain lipid assemblies studied by (31)P-NMR spectroscopy.
Biophys J. 2002 Aug;83(2):994-1003. doi: 10.1016/S0006-3495(02)75225-9.
8
Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels.
J Biol Chem. 1998 Jul 17;273(29):17995-8. doi: 10.1074/jbc.273.29.17995.
9
Electrostatics of lipid bilayer bending.
Biophys J. 1997 May;72(5):2042-55. doi: 10.1016/S0006-3495(97)78848-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验