Suppr超能文献

表面处理对支撑脂质双层中扩散和结构域形成的影响。

Effect of surface treatment on diffusion and domain formation in supported lipid bilayers.

作者信息

Seu Kalani J, Pandey Anjan P, Haque Farzin, Proctor Elizabeth A, Ribbe Alexander E, Hovis Jennifer S

机构信息

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2018, USA.

出版信息

Biophys J. 2007 Apr 1;92(7):2445-50. doi: 10.1529/biophysj.106.099721. Epub 2007 Jan 11.

Abstract

Supported lipid bilayers are widely used as model systems due to their robustness. Due to the solid support, the properties of supported lipid bilayers are different from those of freestanding bilayers. In this article, we examine whether different surface treatments affect the properties of supported lipid bilayers. It will be shown that depending on the treatment method, the diffusion of the lipids can be adjusted approximately threefold without altering the composition. Additionally, as the bilayer-support interaction decreases, it becomes easier to form coexisting liquid-ordered and liquid-disordered domains. The physical/chemical alterations that result from the different treatment methods will be discussed.

摘要

由于其稳定性,支撑脂质双层被广泛用作模型系统。由于有固体支撑,支撑脂质双层的性质与独立双层的性质不同。在本文中,我们研究了不同的表面处理是否会影响支撑脂质双层的性质。结果表明,根据处理方法的不同,脂质的扩散可以在不改变组成的情况下大约调整三倍。此外,随着双层与支撑物之间的相互作用减弱,形成共存的液相有序和液相无序区域变得更加容易。我们将讨论不同处理方法所导致的物理/化学变化。

相似文献

1
Effect of surface treatment on diffusion and domain formation in supported lipid bilayers.
Biophys J. 2007 Apr 1;92(7):2445-50. doi: 10.1529/biophysj.106.099721. Epub 2007 Jan 11.
2
Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking.
Biophys J. 2006 Nov 1;91(9):3313-26. doi: 10.1529/biophysj.106.091421. Epub 2006 Aug 11.
3
5
Structure of two-component lipid membranes on solid support: an x-ray reflectivity study.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051911. doi: 10.1103/PhysRevE.74.051911. Epub 2006 Nov 15.
6
Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers.
Biophys J. 2006 Mar 15;90(6):2086-92. doi: 10.1529/biophysj.105.075150. Epub 2005 Dec 30.
7
Assessing the nature of lipid raft membranes.
PLoS Comput Biol. 2007 Feb 23;3(2):e34. doi: 10.1371/journal.pcbi.0030034. Epub 2007 Jan 5.
8
Diffusion of liquid domains in lipid bilayer membranes.
J Phys Chem B. 2007 Apr 5;111(13):3328-31. doi: 10.1021/jp0702088. Epub 2007 Mar 13.
9
Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.
Biochim Biophys Acta. 2011 Jan;1808(1):405-14. doi: 10.1016/j.bbamem.2010.10.006. Epub 2010 Oct 15.
10
Lateral organization in lipid-cholesterol mixed bilayers.
Biophys J. 2007 Jan 15;92(2):440-7. doi: 10.1529/biophysj.106.093864. Epub 2006 Oct 27.

引用本文的文献

1
Surface-attached model lipid membranes derived from human red blood cells.
bioRxiv. 2025 Aug 18:2025.08.18.670922. doi: 10.1101/2025.08.18.670922.
2
Binding of -[Ru(phen)(3,4Apy)] to Model Lipid Membranes: Implications for New Tools in the Development of Antiamyloid Drugs.
Langmuir. 2024 Dec 31;40(52):27345-27355. doi: 10.1021/acs.langmuir.4c03552. Epub 2024 Dec 16.
3
Coupling liquid phases in 3D condensates and 2D membranes: Successes, challenges, and tools.
Biophys J. 2024 Jun 4;123(11):1329-1341. doi: 10.1016/j.bpj.2023.12.023. Epub 2023 Dec 29.
5
Formation of Precipitation Ellipsoidal Disks and Spheres in the Wake of a Planar Diffusion Front.
J Phys Chem Lett. 2023 Nov 23;14(46):10382-10387. doi: 10.1021/acs.jpclett.3c02295. Epub 2023 Nov 13.
7
Biophysical studies of lipid nanodomains using different physical characterization techniques.
Biophys J. 2023 Mar 21;122(6):931-949. doi: 10.1016/j.bpj.2023.01.024. Epub 2023 Jan 25.
8
Domain-selective disruption and compression of phase-separated lipid vesicles by amphiphilic Janus nanoparticles.
iScience. 2022 Nov 9;25(12):105525. doi: 10.1016/j.isci.2022.105525. eCollection 2022 Dec 22.
10
Electrically controlling and optically observing the membrane potential of supported lipid bilayers.
Biophys J. 2022 Jul 5;121(13):2624-2637. doi: 10.1016/j.bpj.2022.05.037. Epub 2022 May 25.

本文引用的文献

1
Influence of lipid chemistry on membrane fluidity: tail and headgroup interactions.
Biophys J. 2006 Nov 15;91(10):3727-35. doi: 10.1529/biophysj.106.084590. Epub 2006 Sep 1.
2
Viscous water meniscus under nanoconfinement.
Phys Rev Lett. 2006 May 5;96(17):177803. doi: 10.1103/PhysRevLett.96.177803.
3
Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains.
J Membr Biol. 2005 Dec;208(3):193-202. doi: 10.1007/s00232-005-7006-8. Epub 2006 Apr 8.
4
Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study.
Biophys J. 2006 Jan 1;90(1):228-37. doi: 10.1529/biophysj.105.067066. Epub 2005 Oct 7.
5
Infrared spectroscopy of fluid lipid bilayers.
Anal Chem. 2005 Sep 15;77(18):6096-9. doi: 10.1021/ac050990c.
7
Patterned supported lipid bilayers and monolayers on poly(dimethylsiloxane).
Langmuir. 2004 Dec 7;20(25):11092-9. doi: 10.1021/la048450i.
8
Fluid biomembranes supported on nanoporous aerogel/xerogel substrates.
Langmuir. 2004 Aug 17;20(17):7232-9. doi: 10.1021/la049940d.
9
Nonequilibrium behavior in supported lipid membranes containing cholesterol.
Biophys J. 2004 May;86(5):2942-50. doi: 10.1016/S0006-3495(04)74345-3.
10
Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.
Biophys J. 2003 Nov;85(5):3074-83. doi: 10.1016/S0006-3495(03)74726-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验