Suppr超能文献

一种基于人体测量学、饮食和生活方式因素的准确风险评分,用于预测2型糖尿病的发生。

An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes.

作者信息

Schulze Matthias B, Hoffmann Kurt, Boeing Heiner, Linseisen Jakob, Rohrmann Sabine, Möhlig Matthias, Pfeiffer Andreas F H, Spranger Joachim, Thamer Claus, Häring Hans-Ulrich, Fritsche Andreas, Joost Hans-Georg

机构信息

German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Epidemiology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.

出版信息

Diabetes Care. 2007 Mar;30(3):510-5. doi: 10.2337/dc06-2089.

Abstract

OBJECTIVE

We aimed to develop a precise risk score for the screening of large populations for individuals at high risk of developing type 2 diabetes based on noninvasive measurements of major risk factors in German study populations.

RESEARCH DESIGN AND METHODS

A prospective cohort study (European Prospective Investigation into Cancer and Nutrition [EPIC]-Potsdam study) of 9,729 men and 15,438 women aged 35-65 years was used to derive a risk score predicting incident type 2 diabetes. Multivariate Cox regression model coefficients were used to weigh each variable in the calculation of the score. Data from the EPIC-Heidelberg, the Tübingen Family Study for Type 2 Diabetes (TUF), and the Metabolic Syndrome Berlin Potsdam (MeSyBePo) study were used to validate this score.

RESULTS

Information on age, waist circumference, height, history of hypertension, physical activity, smoking, and consumption of red meat, whole-grain bread, coffee, and alcohol formed the German Diabetes Risk Score (mean 446 points [range 118-983]). The probability of developing diabetes within 5 years in the EPIC-Potsdam study increased from 0.3% for 300 to 23.2% for 750 score points. The area under the receiver-operator characteristic (ROC) curve was 0.84 in the EPIC-Potsdam and 0.82 in the EPIC-Heidelberg studies. Correlation coefficients between the German Diabetes Risk Score and insulin sensitivity in nondiabetic individuals were -0.56 in the TUF and -0.45 in the MeSyBePo studies. ROC values for undiagnosed diabetes were 0.83 in the TUF and 0.75 in the MeSyBePo studies.

CONCLUSIONS

The German Diabetes Risk Score (available at www.dife.de) is an accurate tool to identify individuals at high risk for or with undiagnosed type 2 diabetes.

摘要

目的

我们旨在基于对德国研究人群主要危险因素的非侵入性测量,开发一种精确的风险评分,用于在大人群中筛查有患2型糖尿病高风险的个体。

研究设计与方法

一项针对9729名年龄在35 - 65岁的男性和15438名女性的前瞻性队列研究(欧洲癌症与营养前瞻性调查[EPIC]-波茨坦研究)被用于推导预测2型糖尿病发病的风险评分。在计算该评分时,使用多变量Cox回归模型系数对每个变量进行加权。来自EPIC - 海德堡研究、图宾根2型糖尿病家族研究(TUF)以及代谢综合征柏林 - 波茨坦(MeSyBePo)研究的数据被用于验证该评分。

结果

年龄、腰围、身高、高血压病史、身体活动、吸烟以及红肉、全麦面包、咖啡和酒精的摄入量等信息构成了德国糖尿病风险评分(平均446分[范围118 - 983])。在EPIC - 波茨坦研究中,5年内患糖尿病的概率从300分的0.3%增加到750分的23.2%。在EPIC - 波茨坦研究中,受试者工作特征(ROC)曲线下面积为0.84,在EPIC - 海德堡研究中为0.82。在TUF研究中,德国糖尿病风险评分与非糖尿病个体胰岛素敏感性之间的相关系数为 - 0.56,在MeSyBePo研究中为 - 0.45。在TUF研究中,未诊断糖尿病的ROC值为0.83,在MeSyBePo研究中为0.75。

结论

德国糖尿病风险评分(可在www.dife.de获取)是识别有患2型糖尿病高风险或未诊断2型糖尿病个体的准确工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验