Basak Onur, Taylor Verdon
Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stubeweg 51, 79108 Freiburg, Germany.
Eur J Neurosci. 2007 Feb;25(4):1006-22. doi: 10.1111/j.1460-9568.2007.05370.x.
Discrimination of neural stem cells from other progenitors in the developing mammalian brain has been hampered by the lack of specific markers. Identifying the progenitor pools and signalling pathways that guide mammalian neurogenesis are central to understanding the complex mechanisms that govern development of the nervous system. Notch signalling plays a pivotal role in the development of the mammalian nervous system by maintaining multipotent neural stem cells and regulating their fate. In order to identify putative neural stem cells in situ, we generated transgenic mice that express Green Fluorescent Protein (GFP) and report Notch signalling activity in the developing CNS. Here we show the subdivision of progenitors within the neural tube of these mice. We purify progenitors from the neural tube and show that cells with the highest levels of Notch-reporter activity have self-renewal capability and multipotency, whereas those lacking Hes5 expression do not form neurospheres in vitro. Using marker protein co-expression and cell sorting, we show that both neuroepithelial cells as well as some radial glia at all axial levels of the embryonic neural tube display active Notch signalling. However, Tbr2-positive basal progenitors of the developing telencephalon and differentiating Islet1/2- and Lim1-positive motor neurons outside the ventricular zone do not express Hes5-GFP. Quantitative analysis showed that Hes5 expression correlates better with neural stem cell potential than expression of the related gene Hes1. Thus, Notch activity through Hes5 identifies multipotent progenitors with stem cell properties and subdivides the different progenitors into defined pools.
在发育中的哺乳动物大脑中,由于缺乏特异性标记物,神经干细胞与其他祖细胞的区分一直受到阻碍。识别引导哺乳动物神经发生的祖细胞库和信号通路,对于理解支配神经系统发育的复杂机制至关重要。Notch信号通路通过维持多能神经干细胞并调节其命运,在哺乳动物神经系统发育中发挥关键作用。为了原位识别假定的神经干细胞,我们构建了在发育中的中枢神经系统中表达绿色荧光蛋白(GFP)并报告Notch信号活性的转基因小鼠。在此我们展示了这些小鼠神经管内祖细胞的细分情况。我们从神经管中纯化祖细胞,并表明具有最高水平Notch报告基因活性的细胞具有自我更新能力和多能性,而那些缺乏Hes5表达的细胞在体外不能形成神经球。通过标记蛋白共表达和细胞分选,我们表明胚胎神经管所有轴向上的神经上皮细胞以及一些放射状胶质细胞都显示出活跃的Notch信号。然而,发育中的端脑的Tbr2阳性基底祖细胞以及脑室区外分化的Islet1/2和Lim1阳性运动神经元不表达Hes5-GFP。定量分析表明,Hes5表达与神经干细胞潜能的相关性比相关基因Hes1的表达更好。因此,通过Hes5的Notch活性识别出具有干细胞特性的多能祖细胞,并将不同的祖细胞细分为特定的群体。