Suppr超能文献

药物发现中的 ADMET 评估。12. 用于预测 hERG 钾通道阻断的二元分类模型的开发。

ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage.

机构信息

Institute of Functional Nano & Soft Materials-FUNSOM and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.

出版信息

Mol Pharm. 2012 Apr 2;9(4):996-1010. doi: 10.1021/mp300023x. Epub 2012 Mar 16.

Abstract

Inhibition of the human ether-a-go-go related gene (hERG) potassium channel may result in QT interval prolongation, which causes severe cardiac side effects and is a major problem in clinical studies of drug candidates. The development of in silico tools to filter out potential hERG potassium channel blockers in early stages of the drug discovery process is of considerable interest. Here, a diverse set of 806 compounds with hERG inhibition data was assembled, and the binary hERG classification models using naive Bayesian classification and recursive partitioning (RP) techniques were established and evaluated. The naive Bayesian classifier based on molecular properties and the ECFP_8 fingerprints yielded 84.8% accuracy for the training set using the leave-one-out (LOO) cross-validation procedure and 85% accuracy for the test set of 120 molecules. For the two additional test sets, the model achieved 89.4% accuracy for the WOMBAT-PK test set, and 86.1% accuracy for the PubChem test set. The naive Bayesian classifiers gave better predictions than the RP classifiers. Moreover, the Bayesian classifier, employing molecular fingerprints, highlights the important structural fragments favorable or unfavorable for hERG potassium channel blockage, which offers extra valuable information for the design of compounds avoiding undesirable hERG activity.

摘要

人 Ether-a-go-go 相关基因 (hERG) 钾通道的抑制可能导致 QT 间期延长,从而导致严重的心脏副作用,这是药物候选物临床研究中的一个主要问题。开发在药物发现过程早期筛选潜在 hERG 钾通道阻滞剂的计算工具具有相当大的意义。在这里,我们组装了一组具有 hERG 抑制数据的 806 种化合物,并建立和评估了基于朴素贝叶斯分类和递归分区 (RP) 技术的二元 hERG 分类模型。基于分子特性和 ECFP_8 指纹的朴素贝叶斯分类器在使用留一法 (LOO) 交叉验证程序的训练集上的准确率为 84.8%,在 120 个分子的测试集上的准确率为 85%。对于另外两个测试集,该模型在 WOMBAT-PK 测试集上的准确率为 89.4%,在 PubChem 测试集上的准确率为 86.1%。朴素贝叶斯分类器的预测结果优于 RP 分类器。此外,基于分子指纹的贝叶斯分类器突出了有利于或不利于 hERG 钾通道阻断的重要结构片段,为设计避免不良 hERG 活性的化合物提供了额外的有价值信息。

相似文献

10
Recent developments in computational prediction of HERG blockage.计算预测 HERG 阻断的最新进展。
Curr Top Med Chem. 2013;13(11):1317-26. doi: 10.2174/15680266113139990036.

引用本文的文献

7
Review of machine learning and deep learning models for toxicity prediction.机器学习和深度学习模型在毒性预测中的应用综述。
Exp Biol Med (Maywood). 2023 Nov;248(21):1952-1973. doi: 10.1177/15353702231209421. Epub 2023 Dec 6.
10
Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point.机器学习毒性预测:按毒性终点划分的最新进展
ACS Omega. 2022 Dec 13;7(51):47536-47546. doi: 10.1021/acsomega.2c05693. eCollection 2022 Dec 27.

本文引用的文献

5
Extended-connectivity fingerprints.扩展连接指纹。
J Chem Inf Model. 2010 May 24;50(5):742-54. doi: 10.1021/ci100050t.
10
Structure-ADME relationship: still a long way to go?结构-药物代谢动力学关系:仍有很长的路要走?
Expert Opin Drug Metab Toxicol. 2008 Jun;4(6):759-70. doi: 10.1517/17425255.4.6.759.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验