Institute of Functional Nano & Soft Materials-FUNSOM and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
Mol Pharm. 2012 Apr 2;9(4):996-1010. doi: 10.1021/mp300023x. Epub 2012 Mar 16.
Inhibition of the human ether-a-go-go related gene (hERG) potassium channel may result in QT interval prolongation, which causes severe cardiac side effects and is a major problem in clinical studies of drug candidates. The development of in silico tools to filter out potential hERG potassium channel blockers in early stages of the drug discovery process is of considerable interest. Here, a diverse set of 806 compounds with hERG inhibition data was assembled, and the binary hERG classification models using naive Bayesian classification and recursive partitioning (RP) techniques were established and evaluated. The naive Bayesian classifier based on molecular properties and the ECFP_8 fingerprints yielded 84.8% accuracy for the training set using the leave-one-out (LOO) cross-validation procedure and 85% accuracy for the test set of 120 molecules. For the two additional test sets, the model achieved 89.4% accuracy for the WOMBAT-PK test set, and 86.1% accuracy for the PubChem test set. The naive Bayesian classifiers gave better predictions than the RP classifiers. Moreover, the Bayesian classifier, employing molecular fingerprints, highlights the important structural fragments favorable or unfavorable for hERG potassium channel blockage, which offers extra valuable information for the design of compounds avoiding undesirable hERG activity.
人 Ether-a-go-go 相关基因 (hERG) 钾通道的抑制可能导致 QT 间期延长,从而导致严重的心脏副作用,这是药物候选物临床研究中的一个主要问题。开发在药物发现过程早期筛选潜在 hERG 钾通道阻滞剂的计算工具具有相当大的意义。在这里,我们组装了一组具有 hERG 抑制数据的 806 种化合物,并建立和评估了基于朴素贝叶斯分类和递归分区 (RP) 技术的二元 hERG 分类模型。基于分子特性和 ECFP_8 指纹的朴素贝叶斯分类器在使用留一法 (LOO) 交叉验证程序的训练集上的准确率为 84.8%,在 120 个分子的测试集上的准确率为 85%。对于另外两个测试集,该模型在 WOMBAT-PK 测试集上的准确率为 89.4%,在 PubChem 测试集上的准确率为 86.1%。朴素贝叶斯分类器的预测结果优于 RP 分类器。此外,基于分子指纹的贝叶斯分类器突出了有利于或不利于 hERG 钾通道阻断的重要结构片段,为设计避免不良 hERG 活性的化合物提供了额外的有价值信息。