Suppr超能文献

腹侧视觉通路中的不变性与选择性。

Invariance and selectivity in the ventral visual pathway.

作者信息

Geman Stuart

机构信息

Division of Applied Mathematics, Brown University Providence, RI 02912, USA.

出版信息

J Physiol Paris. 2006 Oct;100(4):212-24. doi: 10.1016/j.jphysparis.2007.01.001. Epub 2007 Jan 13.

Abstract

Pattern recognition systems that are invariant to shape, pose, lighting and texture are never sufficiently selective; they suffer a high rate of "false alarms". How are biological vision systems both invariant and selective? Specifically, how are proper arrangements of sub-patterns distinguished from the chance arrangements that defeat selectivity in artificial systems? The answer may lie in the nonlinear dynamics that characterize complex and other invariant cell types: these cells are temporarily more receptive to some inputs than to others (functional connectivity). One consequence is that pairs of such cells with overlapping receptive fields will possess a related property that might be termed functional common input. Functional common input would induce high correlation exactly when there is a match in the sub-patterns appearing in the overlapping receptive fields. These correlations, possibly expressed as a partial and highly local synchrony, would preserve the selectivity otherwise lost to invariance.

摘要

对形状、姿态、光照和纹理具有不变性的模式识别系统永远无法具有足够的选择性;它们会出现很高的“误报率”。生物视觉系统是如何既具有不变性又具有选择性的呢?具体而言,如何将子模式的正确排列与那些破坏人工系统选择性的随机排列区分开来呢?答案可能在于表征复杂细胞和其他不变性细胞类型的非线性动力学:这些细胞对某些输入的接受程度会暂时高于其他输入(功能连接性)。一个结果是,具有重叠感受野的此类细胞对将具有一种可能被称为功能共同输入的相关特性。当在重叠感受野中出现的子模式匹配时,功能共同输入将恰好诱导出高相关性。这些相关性,可能表现为部分且高度局部的同步性,将保留原本会因不变性而丧失的选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验