Kass Robert E, Amari Shun-Ichi, Arai Kensuke, Brown Emery N, Diekman Casey O, Diesmann Markus, Doiron Brent, Eden Uri T, Fairhall Adrienne L, Fiddyment Grant M, Fukai Tomoki, Grün Sonja, Harrison Matthew T, Helias Moritz, Nakahara Hiroyuki, Teramae Jun-Nosuke, Thomas Peter J, Reimers Mark, Rodu Jordan, Rotstein Horacio G, Shea-Brown Eric, Shimazaki Hideaki, Shinomoto Shigeru, Yu Byron M, Kramer Mark A
Carnegie Mellon University, Pittsburgh, PA, USA, 15213; email:
RIKEN Brain Science Institute, Wako, Saitama Prefecture, Japan, 351-0198.
Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8.
Mathematical and statistical models have played important roles in neuroscience, especially by describing the electrical activity of neurons recorded individually, or collectively across large networks. As the field moves forward rapidly, new challenges are emerging. For maximal effectiveness, those working to advance computational neuroscience will need to appreciate and exploit the complementary strengths of mechanistic theory and the statistical paradigm.
数学和统计模型在神经科学中发挥了重要作用,特别是通过描述单个记录的神经元或跨大型网络集体记录的神经元的电活动。随着该领域迅速发展,新的挑战也在出现。为了实现最大的有效性,致力于推进计算神经科学的人员需要认识并利用机械理论和统计范式的互补优势。