Suppr超能文献

计算神经科学:数学与统计视角

Computational Neuroscience: Mathematical and Statistical Perspectives.

作者信息

Kass Robert E, Amari Shun-Ichi, Arai Kensuke, Brown Emery N, Diekman Casey O, Diesmann Markus, Doiron Brent, Eden Uri T, Fairhall Adrienne L, Fiddyment Grant M, Fukai Tomoki, Grün Sonja, Harrison Matthew T, Helias Moritz, Nakahara Hiroyuki, Teramae Jun-Nosuke, Thomas Peter J, Reimers Mark, Rodu Jordan, Rotstein Horacio G, Shea-Brown Eric, Shimazaki Hideaki, Shinomoto Shigeru, Yu Byron M, Kramer Mark A

机构信息

Carnegie Mellon University, Pittsburgh, PA, USA, 15213; email:

RIKEN Brain Science Institute, Wako, Saitama Prefecture, Japan, 351-0198.

出版信息

Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8.

Abstract

Mathematical and statistical models have played important roles in neuroscience, especially by describing the electrical activity of neurons recorded individually, or collectively across large networks. As the field moves forward rapidly, new challenges are emerging. For maximal effectiveness, those working to advance computational neuroscience will need to appreciate and exploit the complementary strengths of mechanistic theory and the statistical paradigm.

摘要

数学和统计模型在神经科学中发挥了重要作用,特别是通过描述单个记录的神经元或跨大型网络集体记录的神经元的电活动。随着该领域迅速发展,新的挑战也在出现。为了实现最大的有效性,致力于推进计算神经科学的人员需要认识并利用机械理论和统计范式的互补优势。

相似文献

1
Computational Neuroscience: Mathematical and Statistical Perspectives.计算神经科学:数学与统计视角
Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8.
6
Model-based cognitive neuroscience.基于模型的认知神经科学。
J Math Psychol. 2017 Feb;76(Pt B):59-64. doi: 10.1016/j.jmp.2016.10.010. Epub 2016 Nov 23.
7
Cognitive network neuroscience.认知网络神经科学
J Cogn Neurosci. 2015 Aug;27(8):1471-91. doi: 10.1162/jocn_a_00810. Epub 2015 Mar 24.

引用本文的文献

2
Depth-based statistical analysis in the spike train space.尖峰序列空间中基于深度的统计分析。
J Appl Stat. 2024 Jul 2;52(2):329-355. doi: 10.1080/02664763.2024.2369954. eCollection 2025.
6
Neurobiological Causal Models of Language Processing.语言处理的神经生物学因果模型
Neurobiol Lang (Camb). 2024 Apr 1;5(1):225-247. doi: 10.1162/nol_a_00133. eCollection 2024.
7
Inference of network connectivity from temporally binned spike trains.从时间分箱的尖峰火车推断网络连通性。
J Neurosci Methods. 2024 Apr;404:110073. doi: 10.1016/j.jneumeth.2024.110073. Epub 2024 Feb 2.

本文引用的文献

3
Spike-Centered Jitter Can Mistake Temporal Structure.以尖峰为中心的抖动会误判时间结构。
Neural Comput. 2017 Mar;29(3):783-803. doi: 10.1162/NECO_a_00927. Epub 2017 Jan 17.
4
Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models.神经群体与网络模型降维的标度性质
PLoS Comput Biol. 2016 Dec 7;12(12):e1005141. doi: 10.1371/journal.pcbi.1005141. eCollection 2016 Dec.
6
Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit.识别皮质微回路中共存振荡的解剖学起源。
PLoS Comput Biol. 2016 Oct 13;12(10):e1005132. doi: 10.1371/journal.pcbi.1005132. eCollection 2016 Oct.
7
Small-World Brain Networks Revisited.再次探讨小世界脑网络。
Neuroscientist. 2017 Oct;23(5):499-516. doi: 10.1177/1073858416667720. Epub 2016 Sep 21.
9
Analysis of Neuronal Spike Trains, Deconstructed.神经元脉冲序列分析,解构剖析。
Neuron. 2016 Jul 20;91(2):221-59. doi: 10.1016/j.neuron.2016.05.039.
10
Beware of the Small-World Neuroscientist!小心这位“小世界”神经科学家!
Front Hum Neurosci. 2016 Mar 8;10:96. doi: 10.3389/fnhum.2016.00096. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验