Nagataki Takayuki, Ishii Kenta, Tachi Yoshimitsu, Itoh Shinobu
Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Dalton Trans. 2007 Mar 21(11):1120-8. doi: 10.1039/b615503k. Epub 2007 Feb 6.
Nickel(ii) complexes supported by a series of pyridylalkylamine ligands [tris(2-pyridylmethyl)amine (TPA; complexes and ), tris[2-(2-pyridyl)ethyl]amine (TEPA; complexes and ), 6-[N,N-bis(2-pyridylmethyl)aminomethyl]-2,4-di-tert-butylphenol ((Dtbp)Pym2H; complexes and ), 6-[N,N-bis[2-(2-pyridyl)ethyl]aminomethyl]-2,4-di-tert-butylphenol ((Dtbp)Pye2H; complexes and ), N-benzyl-bis(2-pyridylmethyl)amine ((Bz)Pym2; complex ) and N-benzyl-bis[2-(2-pyridyl)ethyl]amine ((Bz)Pye2; complex )] have been synthesized and structurally characterized by X-ray crystallographic analysis [coordinating counter anion (co-ligand) of complexes n (n = 1-6) is AcO(-) and that of complexes n (n = 1-4) is NO(3)(-)]. All complexes, except , were obtained as a mononuclear nickel(ii) complex exhibiting a distorted octahedral geometry, whereas complex was isolated as a dinuclear nickel(ii) complex bridged by two nitrate anions. Catalytic activity of the nickel(ii) complexes were examined in the oxidation of cyclohexane with m-CPBA as an oxidant. In all cases, the oxygenation reaction proceeded catalytically to give cyclohexanol as the major product together with cyclohexanone as the minor product. The complexes containing the pyridylmethylamine (Pym) metal-binding group (, , ) showed higher turnover number (TON) than those containing the pyridylethylamine (Pye) metal-binding group (, , ), whereas the alcohol/ketone (A/K) selectivity was much higher with the latter (Pye system) than the former (Pym system). On the other hand, the existence of the NO(3)(-) co-ligand (, and ) caused a lag phase in the early stage of the catalytic reaction. Electronic and steric effects of the supporting ligands as well as the chemical behavior of the co-ligands on the catalytic activity of the nickel(ii) complexes have been discussed on the basis of their X-ray structures.
一系列由吡啶基烷基胺配体支撑的镍(II)配合物[三(2 - 吡啶基甲基)胺(TPA;配合物 和 )、三[2 - (2 - 吡啶基)乙基]胺(TEPA;配合物 和 )、6 - [N,N - 双(2 - 吡啶基甲基)氨基甲基]-2,4 - 二叔丁基苯酚((Dtbp)Pym2H;配合物 和 )、6 - [N,N - 双[2 - (2 - 吡啶基)乙基]氨基甲基]-2,4 - 二叔丁基苯酚((Dtbp)Pye2H;配合物 和 )、N - 苄基 - 双(2 - 吡啶基甲基)胺((Bz)Pym2;配合物 )和N - 苄基 - 双[2 - (2 - 吡啶基)乙基]胺((Bz)Pye2;配合物 )]已通过X射线晶体学分析进行了合成和结构表征[配合物n(n = 1 - 6)的配位抗衡阴离子(共配体)是AcO(-),配合物n(n = 1 - 4)的是NO(3)(-)]。除 外,所有配合物均以呈现扭曲八面体几何构型的单核镍(II)配合物形式获得,而配合物 则作为由两个硝酸根阴离子桥联的双核镍(II)配合物分离得到。以间氯过氧苯甲酸(m - CPBA)作为氧化剂,考察了镍(II)配合物在环己烷氧化反应中的催化活性。在所有情况下,氧化反应均催化进行,以环己醇作为主要产物,环己酮作为次要产物。含有吡啶基甲基胺(Pym)金属结合基团( 、 、 )的配合物比含有吡啶基乙胺(Pye)金属结合基团( 、 、 )的配合物表现出更高的周转数(TON),而醇/酮(A/K)选择性在后者(Pye体系)中比前者(Pym体系)高得多。另一方面,NO(3)(-)共配体( 、 和 )的存在导致催化反应早期出现滞后阶段。基于其X射线结构,讨论了支撑配体的电子和空间效应以及共配体对镍(II)配合物催化活性的化学行为。