Centre for Bioinorganic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
Dalton Trans. 2011 Oct 7;40(37):9413-24. doi: 10.1039/c1dt10902b. Epub 2011 Aug 18.
Several mononuclear Ni(II) complexes of the type Ni(L)(CH(3)CN)(2)(2) 1-7, where L is a tetradentate tripodal 4N ligand such as N,N-dimethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L1), N,N-diethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L2), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)-N'-(pyrid-2-ylmethyl)ethane-1,2-diamine (L3), N,N-dimethyl-N',N'-bis(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine (L4), N,N-dimethyl-N',N'-bis(quinolin-2-ylmethyl)ethane-1,2-diamine (L5), tris(benzimidazol-2-ylmethyl)amine (L6) and tris(pyrid-2-ylmethyl)amine (L7), have been isolated and characterized using CHN analysis, UV-Visible spectroscopy and mass spectrometry. The single-crystal X-ray structures of the complexes Ni(L1)(CH(3)CN)(H(2)O)(2) 1a, Ni(L2)(CH(3)CN)(2)(2) 2, Ni(L3)(CH(3)CN)(2)(2) 3 and Ni(L4)(CH(3)CN)(2)(2) 4 have been determined. All these complexes possess a distorted octahedral coordination geometry in which Ni(II) is coordinated to four nitrogen atoms of the tetradentate ligands and two CH(3)CN (2, 3, 4) or one H(2)O and one CH(3)CN (1a) are located in cis positions. The Ni-N(py) bond distances (2.054(2)-2.078(3) Å) in 1a, 2 and 3 are shorter than the Ni-N(amine) bonds (2.127(2)-2.196(3) Å) because of sp(2) and sp(3) hybridizations of the pyridyl and tertiary amine nitrogens respectively. In 3 the Ni-N(im) bond (2.040(5) Å) is shorter than the Ni-N(py) bond (2.074(4) Å) due to the stronger coordination of imidazole compared with the pyridine donor. In dichloromethane/acetonitrile solvent mixture, all the Ni(ii) complexes possess an octahedral coordination geometry, as revealed by the characteristic ligand field bands in the visible region. They efficiently catalyze the hydroxylation of alkanes when m-CPBA is used as oxidant with turnover number (TON) in the range of 340-620 and good alcohol selectivity for cyclohexane (A/K, 5-9). By replacing one of the pyridyl donors in TPA by a weakly coordinating -NMe(2) or -NEt(2) donor nitrogen atom the catalytic activity decreases slightly with no change in the selectivity. In contrast, upon replacing the pyridyl nitrogen donor by the strongly σ-bonding imidazolyl or sterically demanding quinolyl/benzimidazolyl nitrogen donor, both the catalytic activity and selectivity decrease, possibly due to destabilization of the intermediate (4N)(CH(3)CN)Ni-O˙ radical species. Adamantane is selectively (3°/2°, 12-17) oxidized to 1-adamantanol, 2-adamantanol and 2-adamantanone while cumene is selectively oxidized to 2-phenyl-2-propanol. In contrast to cyclohexane oxidation, the incorporation of sterically hindering quinolyl/benzimidazolyl donors around Ni(ii) leads to a high 3°/2° bond selectivity for adamantane oxidation. A linear correlation between the metal-ligand covalency parameter (β) and the turnover number has been observed.
几种单核 Ni(II) 配合物的类型为Ni(L)(CH(3)CN)(2)(2) 1-7,其中 L 是四齿三脚架 4N 配体,如 N,N-二甲基-N',N'-双(吡啶-2-基甲基)乙烷-1,2-二胺(L1)、N,N-二乙基-N',N'-双(吡啶-2-基甲基)乙烷-1,2-二胺(L2)、N,N-二甲基-N'-(1-甲基-1H-咪唑-2-基甲基)-N'-(吡啶-2-基甲基)乙烷-1,2-二胺(L3)、N,N-二甲基-N',N'-双(1-甲基-1H-咪唑-2-基甲基)乙烷-1,2-二胺(L4)、N,N-二甲基-N',N'-双(喹啉-2-基甲基)乙烷-1,2-二胺(L5)、三(苯并咪唑-2-基甲基)胺(L6)和三(吡啶-2-基甲基)胺(L7),已经通过 CHN 分析、紫外可见光谱和质谱法进行了分离和表征。配合物Ni(L1)(CH(3)CN)(H(2)O)(2) 1a、Ni(L2)(CH(3)CN)(2)(2) 2、Ni(L3)(CH(3)CN)(2)(2) 3 和Ni(L4)(CH(3)CN)(2)(2) 4 的单晶 X 射线结构已经确定。所有这些配合物都具有扭曲的八面体配位几何形状,其中 Ni(II) 与四齿配体的四个氮原子配位,两个 CH(3)CN(2、3、4)或一个 H(2)O 和一个 CH(3)CN(1a)位于顺式位置。在 1a、2 和 3 中,Ni-N(py) 键距离(2.054(2)-2.078(3) Å)比 Ni-N(amine) 键距离(2.127(2)-2.196(3) Å)短,因为吡啶基和叔胺氮原子分别发生 sp(2)和 sp(3)杂化。在 3 中,由于与吡啶供体相比咪唑的配位更强,Ni-N(im) 键(2.040(5) Å)比 Ni-N(py) 键(2.074(4) Å)短。在二氯甲烷/乙腈溶剂混合物中,所有 Ni(ii) 配合物都具有八面体配位几何形状,这可以从可见区域的特征配体场带中看出。当 m-CPBA 用作氧化剂时,它们能够有效地催化烷烃的羟基化,TON 值在 340-620 之间,环己烷的醇选择性好(A/K,5-9)。用弱配位的-NMe(2) 或-NEt(2) 供氮原子取代 TPA 中的一个吡啶供体,催化活性略有下降,选择性不变。相比之下,当吡啶氮供体被强 σ 键合的咪唑基或空间要求高的喹啉/苯并咪唑基氮供体取代时,催化活性和选择性都会降低,可能是由于中间体(4N)(CH(3)CN)Ni-O˙自由基物种的不稳定性所致。金刚烷被选择性地(3°/2°,12-17)氧化为 1-金刚烷醇、2-金刚烷醇和 2-金刚烷酮,而枯烯被选择性地氧化为 2-苯基-2-丙醇。与环己烷氧化不同,在 Ni(ii) 周围引入空间位阻大的喹啉/苯并咪唑基供体,导致金刚烷氧化具有高的 3°/2°键选择性。观察到金属-配体共价参数(β)和 TON 之间存在线性相关性。