Suppr超能文献

经颅磁刺激诱导清醒时皮层兴奋,可使睡眠时慢波活动局部增加。

TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.

机构信息

Department of Psychiatry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS One. 2007 Mar 7;2(3):e276. doi: 10.1371/journal.pone.0000276.

Abstract

BACKGROUND

Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.

METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.

CONCLUSIONS/SIGNIFICANCE: These results provide direct evidence for a link between plastic changes and the local regulation of sleep need.

摘要

背景

慢波睡眠活动(SWA)被认为反映了睡眠需求,与先前清醒时间的长短成正比增加,在睡眠期间减少。然而,负责调节 SWA 的过程尚不清楚。我们最近表明,在涉及特定脑区的学习任务后,SWA 在局部增加,这表明 SWA 可能反映了学习引发的可塑性变化。

方法/主要发现:为了直接检验这一假设,我们在人类中使用经颅磁刺激(TMS)结合高密度脑电图。我们表明,应用于运动皮层的 5-Hz TMS 会引起 TMS 诱发的皮层 EEG 反应的局部增强。然后,我们表明,在 5-Hz TMS 之后的睡眠期,SWA 明显增加(+39.1+/-17.4%,p<0.01,n=10)。电极与磁共振图像的核配准将 SWA 的增加定位到与清醒时最大 TMS 诱导增强相同的前运动部位。此外,清醒时的增强幅度预测了睡眠时局部 SWA 的增加。

结论/意义:这些结果为可塑性变化与睡眠需求的局部调节之间的联系提供了直接证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c96f/1803030/ae815ff63e76/pone.0000276.g001.jpg

相似文献

8
Evidence for differential human slow-wave activity regulation across the brain.
J Sleep Res. 2009 Mar;18(1):3-10. doi: 10.1111/j.1365-2869.2008.00696.x. Epub 2008 Oct 13.
9
The cortical topography of local sleep.
Curr Top Med Chem. 2011;11(19):2438-46. doi: 10.2174/156802611797470303.
10
Locus ceruleus control of slow-wave homeostasis.
J Neurosci. 2005 May 4;25(18):4503-11. doi: 10.1523/JNEUROSCI.4845-04.2005.

引用本文的文献

1
The glymphatic system as a therapeutic target: TMS-induced modulation in older adults.
Front Aging Neurosci. 2025 Jul 17;17:1597311. doi: 10.3389/fnagi.2025.1597311. eCollection 2025.
2
Glymphatic system in neurological disorders and implications for brain health.
Front Neurol. 2025 Feb 5;16:1543725. doi: 10.3389/fneur.2025.1543725. eCollection 2025.
3
Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia.
Adv Neurobiol. 2024;40:351-383. doi: 10.1007/978-3-031-69491-2_13.
4
Can Neuromodulation Improve Sleep and Psychiatric Symptoms?
Curr Psychiatry Rep. 2024 Nov;26(11):650-658. doi: 10.1007/s11920-024-01540-1.
6
Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Aug;8(8):805-814. doi: 10.1016/j.bpsc.2022.12.005. Epub 2022 Dec 17.
7
The Effects of Low-Intensity Repetitive Transcranial Magnetic Stimulation on White Matter Plasticity and Depression.
Biol Psychiatry Glob Open Sci. 2022 Apr 17;2(2):92-94. doi: 10.1016/j.bpsgos.2022.02.001. eCollection 2022 Apr.
8
Individual differences in slow wave sleep architecture relate to variation in white matter microstructure across adulthood.
Front Aging Neurosci. 2022 Aug 25;14:745014. doi: 10.3389/fnagi.2022.745014. eCollection 2022.
10
Translational approaches to influence sleep and arousal.
Brain Res Bull. 2022 Jul;185:140-161. doi: 10.1016/j.brainresbull.2022.05.002. Epub 2022 May 10.

本文引用的文献

2
Instructive effect of visual experience in mouse visual cortex.
Neuron. 2006 Aug 3;51(3):339-49. doi: 10.1016/j.neuron.2006.06.026.
3
Plasticity in the human central nervous system.
Brain. 2006 Jul;129(Pt 7):1659-73. doi: 10.1093/brain/awl082. Epub 2006 May 3.
4
A direct demonstration of cortical LTP in humans: a combined TMS/EEG study.
Brain Res Bull. 2006 Mar 15;69(1):86-94. doi: 10.1016/j.brainresbull.2005.11.003. Epub 2005 Dec 1.
5
Sleep function and synaptic homeostasis.
Sleep Med Rev. 2006 Feb;10(1):49-62. doi: 10.1016/j.smrv.2005.05.002. Epub 2005 Dec 22.
6
Effects of long-term potentiation in the human visual cortex: a functional magnetic resonance imaging study.
Neuroreport. 2005 Dec 19;16(18):1977-80. doi: 10.1097/00001756-200512190-00001.
7
Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS.
PLoS Biol. 2005 Nov;3(11):e362. doi: 10.1371/journal.pbio.0030362. Epub 2005 Oct 18.
8
Breakdown of cortical effective connectivity during sleep.
Science. 2005 Sep 30;309(5744):2228-32. doi: 10.1126/science.1117256.
10
Long-term potentiation of human visual evoked responses.
Eur J Neurosci. 2005 Apr;21(7):2045-50. doi: 10.1111/j.1460-9568.2005.04007.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验