Suppr超能文献

局部睡眠的皮质地形图。

The cortical topography of local sleep.

机构信息

Department of Psychiatry, University of Wisconsin - Madison, WI 53719, USA.

出版信息

Curr Top Med Chem. 2011;11(19):2438-46. doi: 10.2174/156802611797470303.

Abstract

In a recent series of experiments, we demonstrated that a visuomotor adaptation task, 12 hours of left arm immobilization, and rapid transcranial magnetic stimulation (rTMS) during waking can each induce local changes in the topography of electroencephalographic (EEG) slow wave activity (SWA) during subsequent non-rapid eye movement (NREM) sleep. However, the poor spatial resolution of EEG and the difficulty of relating scalp potentials to the activity of the underlying cortex limited the interpretation of these results. In order to better understand local cortical regulation of sleep, we used source modeling to show that plastic changes in specific cortical areas during waking produce correlated changes in SWA during sleep in those same areas. We found that implicit learning of a visuomotor adaptation task induced an increase in SWA in right premotor and sensorimotor cortices when compared to a motor control. These same areas have previously been shown to be selectively involved in the performance of this task. We also found that arm immobilization resulted in a decrease in SWA in sensorimotor cortex. Inducing cortical potentiation with repetitive transcranial magnetic stimulation (rTMS) caused an increase in SWA in the targeted area and a decrease in SWA in the contralateral cortex. Finally, we report the first evidence that these modulations in SWA may be related to the dynamics of individual slow waves. We conclude that there is a local, plasticity dependent component to sleep regulation and confirm previous inferences made from the scalp data.

摘要

在最近的一系列实验中,我们证明了一项视动适应任务、12 小时的左臂固定以及清醒时的快速经颅磁刺激(rTMS)都可以在随后的非快速眼动(NREM)睡眠期间诱导脑电图(EEG)慢波活动(SWA)的拓扑局部变化。然而,EEG 的空间分辨率较差,以及将头皮电位与下皮层活动相关联的难度限制了对这些结果的解释。为了更好地理解睡眠时的局部皮质调节,我们使用源建模来表明,在清醒时特定皮质区域的可塑性变化会导致睡眠期间同一区域的 SWA 发生相关变化。我们发现,与运动控制相比,视动适应任务的内隐学习会导致右运动前和感觉运动皮质中的 SWA 增加。这些区域先前已被证明与执行该任务有关。我们还发现手臂固定会导致感觉运动皮质中的 SWA 减少。用重复经颅磁刺激(rTMS)诱导皮质兴奋会导致目标区域的 SWA 增加,对侧皮质的 SWA 减少。最后,我们报告了第一个证据表明,这些 SWA 的调制可能与单个慢波的动力学有关。我们的结论是,睡眠调节存在局部的、依赖于可塑性的成分,并证实了先前从头皮数据得出的推论。

相似文献

1
The cortical topography of local sleep.
Curr Top Med Chem. 2011;11(19):2438-46. doi: 10.2174/156802611797470303.
7
Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves.
Prog Brain Res. 2011;193:201-18. doi: 10.1016/B978-0-444-53839-0.00013-2.
8
Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study.
J Neurosci. 2010 Oct 6;30(40):13211-9. doi: 10.1523/JNEUROSCI.2532-10.2010.
9
Evidence for differential human slow-wave activity regulation across the brain.
J Sleep Res. 2009 Mar;18(1):3-10. doi: 10.1111/j.1365-2869.2008.00696.x. Epub 2008 Oct 13.

引用本文的文献

1
Exploratory Analysis of Sleep Deprivation Effects on Gene Expression and Regional Brain Metabolism.
Complex Psychiatry. 2025 Mar 24;11(1):50-71. doi: 10.1159/000545461. eCollection 2025 Jan-Dec.
2
Sleep in the East African root rat, Tachyoryctes splendens.
J Exp Zool A Ecol Integr Physiol. 2024 Dec;341(10):1111-1120. doi: 10.1002/jez.2839. Epub 2024 Jun 3.
3
A neuron-glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis.
Nat Neurosci. 2024 Apr;27(4):666-678. doi: 10.1038/s41593-023-01568-1. Epub 2024 Feb 15.
4
Capacity for consciousness under ketamine anaesthesia is selectively associated with activity in posteromedial cortex in rats.
Neurosci Conscious. 2022 Mar 4;2022(1):niac004. doi: 10.1093/nc/niac004. eCollection 2022.
7
Mind-wandering Is Accompanied by Both Local Sleep and Enhanced Processes of Spatial Attention Allocation.
Cereb Cortex Commun. 2021 Jan 15;2(1):tgab001. doi: 10.1093/texcom/tgab001. eCollection 2021.
8
The Effects of Transcranial Electrical Stimulation of the Brain on Sleep: A Systematic Review.
Front Psychiatry. 2021 Jun 7;12:646569. doi: 10.3389/fpsyt.2021.646569. eCollection 2021.

本文引用的文献

1
Origin of active states in local neocortical networks during slow sleep oscillation.
Cereb Cortex. 2010 Nov;20(11):2660-74. doi: 10.1093/cercor/bhq009. Epub 2010 Mar 3.
2
Sleep-dependent improvement in visuomotor learning: a causal role for slow waves.
Sleep. 2009 Oct;32(10):1273-84. doi: 10.1093/sleep/32.10.1273.
3
What is the source of the EEG?
Clin EEG Neurosci. 2009 Jul;40(3):146-9. doi: 10.1177/155005940904000305.
5
Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila.
Science. 2009 Apr 3;324(5923):109-12. doi: 10.1126/science.1166673.
6
Source modeling sleep slow waves.
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1608-13. doi: 10.1073/pnas.0807933106. Epub 2009 Jan 22.
7
Spontaneous neural activity during human slow wave sleep.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15160-5. doi: 10.1073/pnas.0801819105. Epub 2008 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验