Chao Edmund Y S, Armiger Robert S, Yoshida Hiroaki, Lim Jonathan, Haraguchi Naoki
Bjed Consulting, LLC, 9114 Filaree Ct, Corona, CA 92883, USA.
J Orthop Surg Res. 2007 Mar 8;2:2. doi: 10.1186/1749-799X-2-2.
The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation.
将生理学、工程分析与计算机科学相结合的能力,为创造“虚拟人”这一现实可能性打开了大门。本文为人体肌肉骨骼系统生理学的全功能生物力学模拟器奠定了广泛基础。这种模拟技术将生物力学分析和图形建模方面的专业知识结合起来,在结构层面研究关节和结缔组织力学,并以静态和动画形式将结果与模型一起可视化呈现。包括假体植入物和骨折固定装置在内的可适配解剖模型,以及用于在不同边界和载荷条件下进行静态、运动学、动力学和应力分析的强大计算基础设施,都整合在一个通用平台——虚拟交互式肌肉骨骼系统(VIMS)上。在这个软件系统中,还提供了一个可管理的数据库,其中包含长骨尺寸、结缔组织材料特性,以及骨骼关节系统功能活动和载荷条件的库,并且它们可以轻松修改、更新和扩展。应用软件也可供最终用户进行交互式生物力学分析。在虚拟实验室环境中使用这些模型和计算算法的示例,用于展示这些独特数据库和模拟技术的实用性。这个集成系统、模型库和数据库将对骨科教育、基础研究、设备开发与应用,以及与肌肉骨骼关节系统重建、创伤管理和康复相关的临床患者护理产生影响。