Suppr超能文献

太阳紫外线辐射与气候变化对生物地球化学循环的交互作用。

Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

作者信息

Zepp R G, Erickson D J, Paul N D, Sulzberger B

机构信息

U.S. Environmental Protection Agency, National Exposure Research Laboratory, 960 College Station Road, Athens, Georgia 30605-2700, USA.

出版信息

Photochem Photobiol Sci. 2007 Mar;6(3):286-300. doi: 10.1039/b700021a. Epub 2007 Feb 6.

Abstract

This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with exposure to increased UV-B radiation, and have synergistic effects on the penetration of light into aquatic ecosystems. Future changes in climate will enhance stratification of lakes and the ocean, which will intensify photodegradation of CDOM by UV radiation. The resultant increase in the transparency of water bodies may increase UV-B effects on aquatic biogeochemistry in the surface layer. Changing solar UV radiation and climate also interact to influence exchanges of trace gases, such as halocarbons (e.g., methyl bromide) which influence ozone depletion, and sulfur gases (e.g., dimethylsulfide) that oxidize to produce sulfate aerosols that cool the marine atmosphere. UV radiation affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting metal toxicity and the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. Future changes in ecosystem distribution due to alterations in the physical and chemical climate interact with ozone-modulated changes in UV-B radiation. These interactions between the effects of climate change and UV-B radiation on biogeochemical cycles in terrestrial and aquatic systems may partially offset the beneficial effects of an ozone recovery.

摘要

本报告评估了紫外线辐射(280 - 400纳米)和全球气候变化与地球表面全球生物地球化学循环之间相互作用的研究。依赖于平流层臭氧层的UV - B(280 - 315纳米)对生物地球化学循环的影响,通常与同时暴露于受全球气候变化影响的UV - A辐射(315 - 400纳米)有关。这些涉及紫外线辐射(UV - B和UV - A的组合)的相互作用对于预测和评估未来地球环境状况至关重要。越来越多的证据表明,增强的UV - B辐射对陆地生物圈有显著影响,对碳、氮和其他元素的循环产生影响。碳和无机养分(如氮)的循环可能会受到UV - B介导的土壤生物群落变化的影响,这可能是由于UV - B辐射对植物根系分泌物和/或落到土壤中的死亡植物物质化学性质的影响。在干旱环境中,直接光降解在植物凋落物的分解中起主要作用,UV - B辐射是这种光降解的重要组成部分。UV - B辐射强烈影响水生碳、氮、硫和金属的循环,这些循环影响广泛的生命过程。UV - B辐射改变了溶解有机物对微生物的生物可利用性,并加速其转化为溶解的无机碳和氮,包括二氧化碳和铵。溶解有机物的有色部分(CDOM)控制着紫外线辐射进入水体的穿透深度,但CDOM也会被太阳紫外线辐射光降解。CDOM的变化影响紫外线辐射进入水体的穿透深度,对水生生物地球化学过程产生重大影响。由于与气候相关的环流和养分供应变化导致的水生初级生产力和分解的变化,与暴露于增加的UV - B辐射同时发生,并对光进入水生生态系统的穿透产生协同作用。未来气候的变化将增强湖泊和海洋的分层,这将加剧UV辐射对CDOM的光降解。水体透明度的增加可能会增强UV - B对表层水生生物地球化学的影响。不断变化的太阳紫外线辐射和气候也相互作用,影响痕量气体的交换,如影响臭氧消耗的卤代烃(如甲基溴)和氧化生成冷却海洋大气的硫酸盐气溶胶的含硫气体(如二甲基硫)。紫外线辐射影响水生环境中铁、铜和其他痕量金属的生物可利用性,从而可能影响金属毒性以及参与碳和氮循环的浮游植物和其他微生物的生长。由于物理和化学气候的改变导致的生态系统分布的未来变化,与UV - B辐射中臭氧调制的变化相互作用。气候变化和UV - B辐射对陆地和水生系统生物地球化学循环的这些相互作用,可能会部分抵消臭氧恢复的有益影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验