Suppr超能文献

在激光阱实验中,肥厚型和扩张型心肌病突变对小鼠α-心肌肌球蛋白的分子力产生有不同影响。

Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay.

作者信息

Debold Edward P, Schmitt J P, Patlak J B, Beck S E, Moore J R, Seidman J G, Seidman C, Warshaw D M

机构信息

Deptartment of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H284-91. doi: 10.1152/ajpheart.00128.2007. Epub 2007 Mar 9.

Abstract

Point mutations in cardiac myosin, the heart's molecular motor, produce distinct clinical phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Do mutations alter myosin's molecular mechanics in a manner that is predictive of the clinical outcome? We have directly characterized the maximal force-generating capacity (F(max)) of two HCM (R403Q, R453C) and two DCM (S532P, F764L) mutant myosins isolated from homozygous mouse models using a novel load-clamped laser trap assay. F(max) was 50% (R403Q) and 80% (R453C) greater for the HCM mutants compared with the wild type, whereas F(max) was severely depressed for one of the DCM mutants (65% S532P). Although F(max) was normal for the F764L DCM mutant, its actin-activated ATPase activity and actin filament velocity (V(actin)) in a motility assay were significantly reduced (Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A, Conner DA, Mende U, Lohse MJ, Warshaw D, Seidman CE, Seidman JG. Proc Natl Acad Sci USA 103: 14525-14530, 2006.). These F(max) data combined with previous V(actin) measurements suggest that HCM and DCM result from alterations to one or more of myosin's fundamental mechanical properties, with HCM-causing mutations leading to enhanced but DCM-causing mutations leading to depressed function. These mutation-specific changes in mechanical properties must initiate distinct signaling cascades that ultimately lead to the disparate phenotypic responses observed in HCM and DCM.

摘要

心肌肌球蛋白是心脏的分子马达,其点突变会产生不同的临床表型:肥厚型心肌病(HCM)和扩张型心肌病(DCM)。这些突变是否以一种可预测临床结果的方式改变了肌球蛋白的分子力学?我们使用一种新型的负载钳位激光阱测定法,直接表征了从纯合小鼠模型中分离出的两种HCM(R403Q、R453C)和两种DCM(S532P、F764L)突变型肌球蛋白的最大产力能力(F(max))。与野生型相比,HCM突变体的F(max)分别增加了50%(R403Q)和80%(R453C),而其中一种DCM突变体(S532P)的F(max)则严重降低(65%)。尽管F764L DCM突变体的F(max)正常,但其在运动测定中的肌动蛋白激活ATP酶活性和肌动蛋白丝速度(V(actin))显著降低(施密特JP、德博尔德EP、艾哈迈德F、阿姆斯特朗A、弗雷德里科A、康纳DA、门德U、洛泽MJ、沃肖D、塞德曼CE、塞德曼JG。《美国国家科学院院刊》103: 14525 - 14530,2006年)。这些F(max)数据与之前的V(actin)测量结果相结合表明,HCM和DCM是由肌球蛋白一种或多种基本力学特性的改变引起的,导致HCM的突变会增强功能,而导致DCM的突变会降低功能。这些力学特性的突变特异性变化必定引发了不同的信号级联反应,最终导致在HCM和DCM中观察到的不同表型反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验