From the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
the Department of Biophysics, University of Pécs, Medical School, Szigeti Street 12, H-7624 Pécs, Hungary.
J Biol Chem. 2018 Jun 8;293(23):9017-9029. doi: 10.1074/jbc.RA118.001938. Epub 2018 Apr 17.
Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human β-cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding A·M·D complex in the steady state. Under load, the A·M·D state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force-holding capacity due to the reduced occupancy of the force-holding state.
扩张型心肌病(DCM)和肥厚型心肌病(HCM)可导致心律失常、心力衰竭和心脏性死亡。在这里,我们对人类β-心肌球蛋白中五个导致 DCM 的突变的运动结构域进行了功能表征。对 ATP 酶循环中各个事件的动力学分析表明,每个突变改变了该循环中的不同步骤。例如,不同的突变导致 ATP 结合、ATP 水解或 ADP 释放的速率常数增加或减少,或者表现出改变的 ATP、ADP 或肌动蛋白亲和力。局部效应占主导地位,没有共同的模式可以解释类似的突变表型,也没有明显的一组变化可以将 DCM 突变与之前分析的 HCM 肌球蛋白突变区分开来。也就是说,使用我们的数据来模拟完整的 ATP 酶收缩循环揭示了更多的关键见解。四个 DCM 突变降低了工作比(肌球蛋白强烈结合肌动蛋白时的 ATP 酶循环部分),因为在稳态下力保持 A·M·D 复合物的占有率降低。在负载下,由于 ADP 释放的速率常数降低,预测 A·M·D 状态会增加,而所有五个 DCM 突变都减弱了这种效应。我们观察到两个 HCM 突变,即 R403Q 和 R453C,产生了相反的效果。此外,该分析预测 DCM 突变体比 WT 和 HCM 突变体更经济地利用 ATP。我们的研究结果表明,DCM 突变体由于力保持状态的占有率降低而导致力生成和力保持能力不足。