Suppr超能文献

利用异构数据预测细菌中的小非编码RNA

Prediction of small, noncoding RNAs in bacteria using heterogeneous data.

作者信息

Tjaden Brian

机构信息

Computer Science Department, Wellesley College, Wellesley, MA 02481, USA.

出版信息

J Math Biol. 2008 Jan;56(1-2):183-200. doi: 10.1007/s00285-007-0079-5. Epub 2007 Mar 13.

Abstract

sRNAFinder is a new gene prediction system for systematic identification of noncoding genes in bacteria. Most noncoding RNAs in prokaryotes belong to a class of genes denoted as small RNAs (sRNAs). In the model organism Escherichia coli, over 70 sRNA genes have been identified, and the existence of many more has been hypothesized. While various sources of information have proven useful for prediction of novel sRNA genes, most computational approaches do not take advantage of the disparate sources of data available for identifying these noncoding RNA genes. We present a general probabilistic method for predicting sRNA genes in bacteria. The method, based on a general Markov model, is implemented in the computational tool sRNAFinder. sRNAFinder incorporates heterogeneous data sources for gene prediction, including primary sequence data, transcript expression data from microarray experiments, and conserved RNA structure information as determined from comparative genomics analysis. We demonstrate that sRNAFinder improves upon current tools for identifying small, noncoding genes in bacteria.

摘要

sRNAFinder是一种用于系统鉴定细菌中非编码基因的新型基因预测系统。原核生物中的大多数非编码RNA属于一类被称为小RNA(sRNA)的基因。在模式生物大肠杆菌中,已经鉴定出70多个sRNA基因,并且推测还有更多sRNA基因存在。虽然各种信息来源已被证明对预测新的sRNA基因有用,但大多数计算方法并未利用可用于识别这些非编码RNA基因的不同数据来源。我们提出了一种用于预测细菌中sRNA基因的通用概率方法。该方法基于通用马尔可夫模型,在计算工具sRNAFinder中实现。sRNAFinder整合了用于基因预测的异构数据源,包括一级序列数据、来自微阵列实验的转录本表达数据以及通过比较基因组学分析确定的保守RNA结构信息。我们证明,sRNAFinder在识别细菌中小的非编码基因方面比现有工具有所改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验