Valverde Claudio, Livny Jonathan, Schlüter Jan-Philip, Reinkensmeier Jan, Becker Anke, Parisi Gustavo
Programa Interacciones Biológicas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, B1876BXD, Argentina.
BMC Genomics. 2008 Sep 16;9:416. doi: 10.1186/1471-2164-9-416.
Small non-coding RNAs (sRNAs) have emerged as ubiquitous regulatory elements in bacteria and other life domains. However, few sRNAs have been identified outside several well-studied species of gamma-proteobacteria and thus relatively little is known about the role of RNA-mediated regulation in most other bacterial genera. Here we have conducted a computational prediction of putative sRNA genes in intergenic regions (IgRs) of the symbiotic alpha-proteobacterium S. meliloti 1021 and experimentally confirmed the expression of dozens of these candidate loci in the closely related strain S. meliloti 2011.
Our first sRNA candidate compilation was based mainly on the output of the sRNAPredictHT algorithm. A thorough manual sequence analysis of the curated list rendered an initial set of 18 IgRs of interest, from which 14 candidates were detected in strain 2011 by Northern blot and/or microarray analysis. Interestingly, the intracellular transcript levels varied in response to various stress conditions. We developed an alternative computational method to more sensitively predict sRNA-encoding genes and score these predicted genes based on several features to allow identification of the strongest candidates. With this novel strategy, we predicted 60 chromosomal independent transcriptional units that, according to our annotation, represent strong candidates for sRNA-encoding genes, including most of the sRNAs experimentally verified in this work and in two other contemporary studies. Additionally, we predicted numerous candidate sRNA genes encoded in megaplasmids pSymA and pSymB. A significant proportion of the chromosomal- and megaplasmid-borne putative sRNA genes were validated by microarray analysis in strain 2011.
Our data extend the number of experimentally detected S. meliloti sRNAs and significantly expand the list of putative sRNA-encoding IgRs in this and closely related alpha-proteobacteria. In addition, we have developed a computational method that proved useful to predict sRNA-encoding genes in S. meliloti. We anticipate that this predictive approach can be flexibly implemented in many other bacterial species.
小非编码RNA(sRNA)已成为细菌和其他生命领域中普遍存在的调控元件。然而,除了几种经过充分研究的γ-变形菌外,很少有sRNA在其他细菌中被鉴定出来,因此对于RNA介导的调控在大多数其他细菌属中的作用了解相对较少。在此,我们对共生α-变形菌苜蓿中华根瘤菌1021基因间区域(IgR)中的假定sRNA基因进行了计算预测,并通过实验证实了其中数十个候选基因座在密切相关菌株苜蓿中华根瘤菌2011中的表达。
我们的首个sRNA候选基因汇编主要基于sRNAPredictHT算法的输出。对精心挑选的列表进行全面的手动序列分析后,得到了一组最初感兴趣的18个IgR,通过Northern印迹和/或微阵列分析在2011菌株中检测到其中14个候选基因。有趣的是,细胞内转录水平会因各种应激条件而变化。我们开发了一种替代计算方法,以更灵敏地预测编码sRNA的基因,并根据多个特征对这些预测基因进行评分,从而识别出最强的候选基因。采用这种新策略,我们预测了60个染色体独立转录单元,根据我们的注释,这些单元代表了编码sRNA基因的强候选基因,包括在本研究以及其他两项同期研究中通过实验验证的大多数sRNA。此外,我们还预测了在大质粒pSymA和pSymB中编码的众多候选sRNA基因。通过对2011菌株的微阵列分析,验证了相当一部分染色体和大质粒携带的假定sRNA基因。
我们的数据增加了通过实验检测到的苜蓿中华根瘤菌sRNA的数量,并显著扩展了该菌及密切相关α-变形菌中假定的编码sRNA的IgR列表。此外,我们开发了一种计算方法,已证明该方法有助于预测苜蓿中华根瘤菌中编码sRNA的基因。我们预计这种预测方法可以灵活应用于许多其他细菌物种。