Suppr超能文献

扩散张量图像的高效各向异性滤波。

Efficient anisotropic filtering of diffusion tensor images.

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA.

出版信息

Magn Reson Imaging. 2010 Feb;28(2):200-11. doi: 10.1016/j.mri.2009.10.001. Epub 2010 Jan 12.

Abstract

To improve the accuracy of structural and architectural characterization of living tissue with diffusion tensor imaging, an efficient smoothing algorithm is presented for reducing noise in diffusion tensor images. The algorithm is based on anisotropic diffusion filtering, which allows both image detail preservation and noise reduction. However, traditional numerical schemes for anisotropic filtering have the drawback of inefficiency and inaccuracy due to their poor stability and first order time accuracy. To address this, an unconditionally stable and second order time accuracy semi-implicit Craig-Sneyd scheme is adapted in our anisotropic filtering. By using large step size, unconditional stability allows this scheme to take much fewer iterations and thus less computation time than the explicit scheme to achieve a certain degree of smoothing. Second-order time accuracy makes the algorithm reduce noise more effectively than a first order scheme with the same total iteration time. Both the efficiency and effectiveness are quantitatively evaluated based on synthetic and in vivo human brain diffusion tensor images, and these tests demonstrate that our algorithm is an efficient and effective tool for denoising diffusion tensor images.

摘要

为了提高扩散张量成像在活体组织结构和架构特征描述方面的准确性,提出了一种有效的平滑算法,用于减少扩散张量图像中的噪声。该算法基于各向异性扩散滤波,允许在保留图像细节和减少噪声之间取得平衡。然而,由于稳定性差和一阶时间精度,传统的各向异性滤波数值方案效率和精度都较差。为了解决这个问题,我们在各向异性滤波中采用了无条件稳定且二阶时间精度的半隐式 Craig-Sneyd 方案。通过使用大步长,无条件稳定性使得该方案在达到一定平滑程度时,比显式方案需要更少的迭代次数,从而减少计算时间。二阶时间精度使得该算法在相同的总迭代时间内比一阶方案更有效地减少噪声。基于合成和活体人脑扩散张量图像对效率和有效性进行了定量评估,这些测试表明,我们的算法是一种用于去噪扩散张量图像的有效工具。

相似文献

1
Efficient anisotropic filtering of diffusion tensor images.
Magn Reson Imaging. 2010 Feb;28(2):200-11. doi: 10.1016/j.mri.2009.10.001. Epub 2010 Jan 12.
2
Reduction of noise in diffusion tensor images using anisotropic smoothing.
Magn Reson Med. 2005 Feb;53(2):485-90. doi: 10.1002/mrm.20339.
3
Noise-driven anisotropic diffusion filtering of MRI.
IEEE Trans Image Process. 2009 Oct;18(10):2265-74. doi: 10.1109/TIP.2009.2025553. Epub 2009 Jun 19.
4
Sequential anisotropic multichannel Wiener filtering with Rician bias correction applied to 3D regularization of DWI data.
Med Image Anal. 2009 Feb;13(1):19-35. doi: 10.1016/j.media.2008.05.004. Epub 2008 Jun 7.
5
Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):344-51. doi: 10.1007/978-3-540-75759-7_42.
6
Image filtering via generalized scale.
Med Image Anal. 2008 Apr;12(2):87-98. doi: 10.1016/j.media.2007.07.007. Epub 2007 Aug 9.
7
Diffusion tensor magnetic resonance image regularization.
Med Image Anal. 2004 Mar;8(1):47-67. doi: 10.1016/j.media.2003.06.002.
8
Diffusion tensor image up-sampling: a registration-based approach.
Magn Reson Imaging. 2010 Dec;28(10):1497-506. doi: 10.1016/j.mri.2010.06.018. Epub 2010 Sep 15.
9
Rician noise removal in diffusion tensor MRI.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):117-25. doi: 10.1007/11866565_15.

引用本文的文献

1
MRI-based 3D Estimation of Skeletal Muscle Architecture and Strain during Contraction.
bioRxiv. 2025 Jul 29:2025.07.23.666431. doi: 10.1101/2025.07.23.666431.
3
A registration strategy to characterize DTI-observed changes in skeletal muscle architecture due to passive shortening.
PLoS One. 2025 Mar 10;20(3):e0302675. doi: 10.1371/journal.pone.0302675. eCollection 2025.
4
A Comparison of Skeletal Muscle Diffusion Tensor Imaging Tractography Seeding Methods.
bioRxiv. 2024 Aug 30:2024.08.29.610343. doi: 10.1101/2024.08.29.610343.
6
Denoising for Improved Parametric MRI of the Kidney: Protocol for Nonlocal Means Filtering.
Methods Mol Biol. 2021;2216:565-576. doi: 10.1007/978-1-0716-0978-1_34.
7
Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography.
PLoS One. 2015 May 26;10(5):e0126953. doi: 10.1371/journal.pone.0126953. eCollection 2015.
8
Diffusion weighted image denoising using overcomplete local PCA.
PLoS One. 2013 Sep 3;8(9):e73021. doi: 10.1371/journal.pone.0073021. eCollection 2013.

本文引用的文献

1
Efficient and reliable schemes for nonlinear diffusion filtering.
IEEE Trans Image Process. 1998;7(3):398-410. doi: 10.1109/83.661190.
2
Nonlinear anisotropic filtering of MRI data.
IEEE Trans Med Imaging. 1992;11(2):221-32. doi: 10.1109/42.141646.
3
Rician noise removal in diffusion tensor MRI.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):117-25. doi: 10.1007/11866565_15.
4
Riemannian graph diffusion for DT-MRI regularization.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):234-42. doi: 10.1007/11866763_29.
5
Log-Euclidean metrics for fast and simple calculus on diffusion tensors.
Magn Reson Med. 2006 Aug;56(2):411-21. doi: 10.1002/mrm.20965.
6
Noise removal in magnetic resonance diffusion tensor imaging.
Magn Reson Med. 2005 Aug;54(2):393-401. doi: 10.1002/mrm.20582.
7
Reduction of noise in diffusion tensor images using anisotropic smoothing.
Magn Reson Med. 2005 Feb;53(2):485-90. doi: 10.1002/mrm.20339.
9
An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations.
Neuroimage. 2003 Oct;20(2):1140-53. doi: 10.1016/S1053-8119(03)00277-5.
10
Looking into the functional architecture of the brain with diffusion MRI.
Nat Rev Neurosci. 2003 Jun;4(6):469-80. doi: 10.1038/nrn1119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验